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ABSTRACT 

Obtaining parameter estimates for nonlinear regression model using Gauss-Newton and gradient-based 

methods present some complex analytical challenges. In this paper, the effectiveness and simplicity of Particle 

Swarm Optimization (PSO) and Genetic Algorithm (GA) on five nonlinear regression models with varying 

level of complexities were investigated. The PSO and GA techniques were implemented for each model in R 

and the model fittings were performed based on 30 independent runs for at least 100 iterations. The 

performances of PSO and GA were evaluated based on computation time, residual error. The results obtained 

showed that PSO significantly outperformed GA in terms of computation time and accuracy of parameter 

estimates. However, GA required fewer iterations and produced fairly accurate results. Further investigation 

showed that PSO and GA are both competitive, effective, simple to implement, and can be considered reliable 

for obtaining the parameter estimates of nonlinear regression models.  

 

Keywords: Regression analysis, stochastic algorithm, least squares estimation, particle swarm optimization,  
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INTRODUCTION 

Regression analysis is one of the prominent statistical 

techniques used across disciplines – in science and social 

sciences – for estimating or predicting the relationship 

between two or more variables. Generally, regression analysis 

may be classified as linear and nonlinear regression, and, 

oftentimes a regression model is expressed as a mathematical 

equation composed of some unknown parameters 𝛽 with an 

error term 𝜀 ~𝑁(𝜇, 𝜎2) (Hsin-Hsiung Huang et al., 2010). 

Suppose we specify the model as: 

  𝑦𝑖 =  𝑓(𝑥𝑖 , 𝛽)  + 𝜀 ,           𝑖 = 1 … 𝑛                    (1) 

where 𝑓 is a general function of the predictor variable(s) 𝑥𝑖 

and parameter(s) 𝛽 ; 𝑦𝑖  is the response variable. If the 

derivative of 𝑓  with respect to the parameter(s) does not 

depend upon one of the 𝛽′𝑠, we say that the model is linear in 

parameter, which yields a widely recognized procedure 

having a slope and intercept. This form of model is referred 

to as the classical linear regression model. Here, the unknown 

parameter estimates can be easily obtained, analytically, using 

the least square estimation technique. However, in real life 

processes particularly in fields such as biology, chemistry, 

logistics and engineering, linear models hardly represent the 

asymptotic behavior of experimental variables, so, one may 

need to employ other form of relationship known as the 

nonlinear regression.  

In nonlinear regression, dataset is fitted to a model expressed 

as nonlinear combination of mathematical function and 

variables. This form of relationship has a competitive 

advantage over the linear regression because of its capability 

to fit a broad range of functions (Sotirios and Fernando, 

2015). In other words, model of this form are parsimonious, 

consistent and can accommodate variety of mean functions 

such as exponential, logarithms and trigonometry, thereby 

allowing a more robust curve fitting functionality (Bates and 

Watts, 2007). Similar to linear models, the concept involved 

in estimating the coefficients of nonlinear models is relatively 

the same, however, its non-linear nature makes it more 

difficult, and most-time impractical to obtain a solution 

analytically. To circumvent this structural (nonlinear) 

problem, linearization through logarithm transformation is 

often utilized. Yet, in some cases, transformation is not 

feasible (Chicco and Mazza, 2020).  What then happens when 

a nonlinear model cannot be linearized or is intrinsically 

nonlinear? Researchers are compelled to seek “bailout” 

approaches – for instance, the use of iterative algorithms – 

which is one the major challenge of choosing to use the 

nonlinear least square regression. This inherent problem 

further contributed to development of numerous estimation 

algorithms.  

In classical iterative algorithms, users are required to provide 

a starting value for the unknown coefficients of the problem 

of interest. Although there is no general rule for this selecting 

this starting values, a good guess is needed in order to obtain 

reliable results. Deterministic algorithms such as gauss-

newton and gradient based methods are the commonly used 

and well-established practices for estimating the unknown 

parameter (𝛽) value of nonlinear regression models (Madsen 

et al., 2004). These methods however are limited to a certain 

class of problems because they depend on stringent details 

(such as gradient information, matrix-invertibility, accurate 

guess for initial values) to arrive at reliable estimates (Bulent 

and Alptekin, 2004). Other limitations include, very slow 

convergence and definite data representation (Chicco and 

Mazza, 2020). More specifically, the gradient methods 

require that the function be differentiable while the gauss-

newton methods depend on auxiliary information (often not 

be available) for optimal performance. In addition, these 

deterministic algorithms usually get stuck to local optima, 

instead of locating a global optimum that optimizes an 

objective function (Friedl and Kuczmann, 2014), thereby 

resulting to misleading estimates. In fact, an inaccurate guess 

of the boundaries of the starting values greatly influence the 

solution time, search speed of the algorithms (Sotirios and 

Fernando, 2015). Broadly speaking, these algorithms are 

usually centered around either of the two approaches: The 

Taylor series and corrections of several parameters at each 
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iteration on the assumption of local linearity. They attempt to 

solve the underlying nonlinear least square problem by 

successive approximations of solution, starting from an initial 

guess. Sadly, this approach is inconsistent because of 

divergence in successive iterations. 

Eventually, researchers developed a list of modern techniques 

to overcome the difficulties faced in estimating the unknown 

parameter value of nonlinear regression models.  These 

alternative methods named meta-heuristic algorithms employ 

a higher level procedure to provide a sufficiently good 

solution close enough to the exact solutions with limited 

assumptions and computation resources (Khanduja and 

Bhushan, 2021). Most of these algorithms are designed to 

mimic natural, social or biological activities of living things 

in order to find best points for an objective function.  Kennedy 

and Eberhart (1995) are one of the early researchers that 

proposed a powerful method to tackle such problem in 

nonlinear regression. They introduced the Particle Swarm 

Optimization (PSO) technique to simulate the choreography 

of flock of birds or school of fish in search of food. Before 

Kennedy’s PSO, John Holland, his students and colleagues 

introduced the Genetic algorithm (GA) in 1975 (Holland, 

1975). They established the GA to imitate the adaptation and 

evolution of living things in nature. Holland’s GA was 

designed to move a set of solution from one population to a 

new population using mechanism based on the theory of 

“survival of the fittest”. Other meta-heuristics algorithms 

include, fruit-fly optimization, simulated annealing and ant-

colony optimization (Desale et al., 2015; Rajakumar et al., 

2016). The PSO and GA are particularly of interest because 

they are not restrictive to specific problem (Malik et al., 2021) 

and possess promising abilities to narrow down a very large 

pool of potential solutions to a subset of tangible solutions. 

More also, PSO and GA are applicable to enhance the 

estimation accuracy of real life processes (Erdoğmuş and 

Ekiz, 2016; Sengupta et al., 2018; Gupta, 2021). A number of 

authors (Bulent and Alptekin, 2004; Kapanoglu et al., 2007; 

Malekan and Khosravi, 2018; Ajdad et al., 2019; Naidu et al., 

2018; de Almeida and Leite, 2019; Özsoy & Örkçü, 2016) 

have reported that PSO and GA are easy to implement 

because they do not require stringent information for 

maximum effectiveness. 

Over the years, vast literatures have been published in relation 

to the development, applications and refinement of PSO and 

GA. More recently, these algorithms were used for various 

regression (Belhocine et al, 2021), classification (Liu R., 

2014) and feature selection problems (Ghosh et al. 2020). 

While there is sizeable number of literatures available, to the 

best of our knowledge only few work have delineated the 

effectiveness and simplicity of both Particle swarm 

optimization and Genetic algorithm for unknown parameter 

estimates of nonlinear regression model in view of 

computation time, residual errors and curse of objective 

function. Consequently, this study is devoted to investigate 

the effectiveness and simplicity of Particle swarm 

optimization and Genetic algorithm for estimating the 

unknown parameters of nonlinear regression models. The rest 

of this paper is organized as follows: the concepts of particle 

swarm optimization and genetic algorithm are briefly 

introduced, followed by implementation and analysis of 

experimental problems; discussion and analysis of results. 

Lastly, concluding remarks are provided. 

 

METHODOLOGY 

Particle Swarm Optimization (PSO) 

The Particle Swarm Optimization (PSO) is a population-

based optimization algorithm modelled after the social 

cognitive behavior of flock of bird, bees or a fish school. 

Originally introduced in the mid-90s by Kennedy, Eberhart 

and Shi, PSO was built to mimic the foraging of a bird flock 

searching for food over a landscape, with an objective to learn 

the principles surrounding their well-organized movements 

and sudden regrouping along a direction in a search space also 

called swarm.  In this case, each bird or individual in the space 

is called particles, and represents a potential solution. Each 

particle navigates through a search space with a dynamic 

velocity that is influenced by its previous best experience or 

neighbor (social) experience. With this unique ability, the 

particles are able to learn and race towards the optimal point 

by emulating the characteristics of other successful particles 

in the same region.  In addition, each particle enjoys an 

allocated memory that permit them to remember and update 

their best position ever encountered. The information sharing 

mechanism continues throughout the search period until a 

supposed (optimal) destination is reached. Obviously, the best 

positions over a number of iterations equals to the optimal 

fitness value of an objection function. 

In PSO algorithm, the process begins with a random 

population of candidate solution or particles. Each individual 

solution circulates a multidimensional search space using 

memorized information that is distributed among members in 

a swarm. Each member of the swarm is represented by a 

vector coordinates in a Cartesian plane. Furthermore, the 

particle vector is assigned a vector that determines its next 

movement in the search space.  Mathematically, Assume we 

have a d-dimensional search space, we can represent the 𝑖𝑡ℎ 

particle at k-iteration in the space by a position vector 𝑥𝑖
𝑘 and 

the particle velocity by 𝑣𝑖
𝑘. Now, consider the best position 

visited for the 𝑖𝑡ℎ  particle as 𝑝𝑏𝑒𝑠𝑡
𝑘 , also the overall best 

position encountered so far as 𝑔𝑏𝑒𝑠𝑡 . The velocity and the 

position of each particle is updated through the following 

simple mathematical formula   

𝑣𝑖
𝑘+1 = 𝑤 ∗ 𝑣𝑖

𝑘 + 𝑐1 ∗ 𝑟1() ∗ (𝑝𝑏𝑒𝑠𝑡
𝑘 − 𝑥𝑖

𝑘  ) + 𝑐2 ∗ 𝑟2()

∗ (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖
𝑘  )                       (2) 

and  

   𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1                                                     (3) 

where 𝑐1 𝑎𝑛𝑑 𝑐2  represents the cognitive and social 

parameters respectively,  𝑟1 𝑎𝑛𝑑 𝑟2  are random numbers 

uniformly distributed within [0, 1]. 𝑝𝑏𝑒𝑠𝑡
𝑘  is particle k best 

position and 𝑔𝑏𝑒𝑠𝑡 is the global best position for all particles.  

A two-dimensional geometry representation of PSO particles 

in space is displayed in figure 1 
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Figure 1: PSO particles geometry representation in a two-dimensional search space. 

In sum, PSO algorithm attempt to solve a problem by 

employing a random population of potential solutions called 

particles that travels through a multidimensional space in 

search for best points (food) according to a simple 

mathematical formula. This implying that PSO does not 

require that the function be differentiable. Thus, PSO is easy 

to implement with simple parameters to adjust. 

 

A basic pseudo-code for implementing PSO algorithm is given below 

Initialize PSO parameters and define population size of particles 

Read in the values of response y and predictor variables x 

Do   

 for each particle 

  calculate the fitness value 

  if the fitness value is better than any best fitness available 

  update and set as new 𝑝𝑏𝑒𝑠𝑡 

 end for 

 select the particle with the best fitness value (𝑝𝑏𝑒𝑠𝑡) from all the particle as 𝑔𝑏𝑒𝑠𝑡 

 for each particle 

  compute and update particle velocity 𝑣𝑖
𝑘+1 

  Compute and update the particle position, 𝑥𝑖
𝑘+1 

 end for 

while the condition is not satisfied 

return Gbest as the best estimates of the global optimum 

 

Genetic algorithm (GA) 

The Genetic algorithm is a meta-heuristic and an adaptive 

search algorithm designed to emulate the Darwinian theory of 

“survival of the fittest”. It mimics the natural activities of 

biological species and their ability to adapt and compete 

effectively for resources in a search region or landscape. 

Developed by Holland and his colleagues in the 1970s, GA is 

known to for its high level procedure and elegant list of 

accessories called operators used to obtain optimal solution 

for complex problems.  

Similar to PSO, the GA algorithm begins with a random 

population of potential solutions (say, ancestor/parents) that 

undergo some selection criteria and reproduction. At each 

Gbest 

𝑥𝑖
𝑘  

𝑥𝑖
𝑘+1 
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stage, a pool of candidate solutions is randomly selected to 

experience mutation, reproduction and recombination, then 

give birth to a new set of solutions (say, offspring) that 

replaces the “weaker” parents. Usually, the new set of 

offspring is better or “fitter” than its parents. To ensure this, 

the GA technique assigns a fitness ranking to each candidate 

so that a large proportion of the “fitter” individual survives 

and are capable to crossover and reproduce into another 

generation. The cycle is repeated in this manner for some 

number of successive generations until some conditions are 

met. Thus, GA is advantageous to most conventional 

techniques, such as not requiring gradient information, large 

search space exploration capability and low memory usage by 

eliminating weak or redundant solution at each generation. It 

is also offers a tangible list of operators for tuning which may 

guarantee better estimates. 

Essentially, after the initialization of population, in each 

iteration or generation, the GA operates using at least three 

genetic operators, namely, selection, crossover and mutation. 

Selection operator ensures that healthy solutions are 

stochastically chosen in the current generation for 

reproducing in the next generation. Crossover operator 

randomly single out pairs of individual from the population to 

generate a superior offspring while Mutation integrates and 

maintain diversity among the solutions by injecting 

randomness into the population in order to prevent stagnation, 

so, sometimes, delaying the computation time of GA. Hence, 

these GA operators invariably contribute to the search for 

optimum global in a persistently evolving set of solutions 

which makes it an adaptive search algorithm.

 

A fundamental pseudo-code for implementing the Genetic algorithm is given as follows: 

Initialize GA parameters and define random population 

Read in the values of response y and predictor variables x 

while (some condition is not satisfied) do 

 compute the fitness of each individual 

 select random pairs of individual for mating 

 generate new individual and crossover using the crossover operator 

 randomize the entire population using mutation operator 

 evaluate the fitness of new individuals 

 update and replace weak individuals with new ones 

end while 

return best individual found as optimal fitness value 

 

Experimental Problems 

To investigate the performance of PSO and GA, we extracted 

five nonlinear regression experimental problems from the 

National Institute of Standards and Technology (NIST) 

website (NIST/SEMATECH, 2022) alongside their 

corresponding certified values. The number of observations 

for each problem ranges from 6 to 35 and a maximum number 

of 3 parameters. While it is unstated on the reference website 

how each problem difficulty level was determined, we predict 

that the model structure/dimension is the chief characteristics. 

All experimental models and datasets used in this study can 

be found at the NIST website: 

http://www.itl.nist.gov/div898/strd/nls/nls_main.shtml. 

 

Table 1: Nonlinear regression experimental problems 

S/N Model name Difficulty level/classification 

No. of 

observation. 

/parameters. 

Model structure 

𝟏 Chwirut2 Lower/Exponential 54/3 𝒚 =  
𝒆𝒙𝒑[−𝜷𝟏𝒙]

𝜷𝟐 +  𝜷𝟑𝒙
 

𝟐 Danwood Lower/Miscellaneous 6/2 𝒚 = 𝜷𝟏𝒙𝜷𝟐 

𝟑 Misra1d Average/Exponential 14/2 𝒚 =
𝜷𝟏𝜷𝟐𝒙

𝟏 + 𝜷𝟐𝒙
 

𝟒 Eckerle4 Higher/Miscellaneous 35/3 𝒚 =
𝜷𝟏

𝜷𝟐
𝒆𝒙𝒑 [

−(𝒙 − 𝜷𝟑)𝟐

𝟐𝜷𝟐
𝟐

] 

𝟓 Rat42 Higher/Miscellaneous 9/3 𝒚 =
𝜷𝟏

𝟏 + 𝒆𝒙𝒑[𝜷𝟐 − 𝜷𝟑𝒙]
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Model formulation and Implementation 

It is useful to observe that least square estimation in regression 

attempt to minimize the error sum of squares between 

observed and predicted data-points, given by the formula: 

  𝑆𝑆𝐸 (𝛽) = ∑ 𝜖𝑖
2

𝑛

𝑖=1

= ∑(𝑦𝑖 − 𝑓(𝑥𝑖 , 𝛽))2

𝑛

𝑖=1

                  (4) 

Here, the 𝑆𝑆𝐸 (𝛽) equation is likened to minimization of the 

objective function of an unconstrained optimization problem 

– one of the most frequently encountered problem in 

mathematics. Thus, we formulated each problem of interest to 

resemble the 𝑆𝑆𝐸 (𝛽)  equation.  For instance, Misrald model 

becomes, 

𝐹𝑜𝑏𝑗𝑚𝑖𝑠𝑟𝑎𝑙𝑑 = ∑ (𝑦𝑖 − (
𝛽1 ∗  𝛽2𝑥

1 + 𝛽2𝑥
))

2𝑛

𝑖=1

                    (5) 

Furthermore, in order estimates the coefficients of 

experimental models, we developed custom functions for 

each model and incorporated it into the PSO and GA packages 

in R. The function takes in each dataset and a list of unknown 

parameters as argument and returns optimal values that 

corresponds to the unknown estimates of the model 

parameters. In addition, we programmed the estimation 

algorithm to stop when it reaches a pre-defined tolerance level 

of 1𝑒 − 8 or when maximum-iteration is reached. Other in-

built libraries and packages employed in the process include 

“plot” and “point” to visualize the behavior of the solution 

and “tic & toc” to track the solution time. All the 

implementation was carried out in R programming 

environment (R core team, 2021). The performance results are 

obtained displayed on Table 3 through 7. 

 

RESULTS 

Table 2: Parameter settings for PSO and GA 

PSO GA 

Swarm size: 500 

Max_Iteration:100 

Population size: 500 

Generation: 100 

 

Table 3: Chwirut2 model parameter estimates using PSO and GA method 

 

Parameters 

Chwirut2 model 

PSO approach Certified values 

Best Worst  

𝜷𝟏 0.1628154258511 0.1468814223203 0.16657666537 

𝜷𝟐 0.0050999154773 0.0050700722573 0.0051653291286 

𝜷𝟑 0.0123073249707 0.0125276176092 0.012150007096 

residual sum of squares 513.1504670813640 521.4695044173250 513.04802941 

solution time 1.189999999999 1.7099999999991  

 

 GA approach Certified values 

Best Worst  

𝜷𝟏 0.1617181395064 0.1503462096550 0.16657666537 

𝜷𝟐 0.0050338468429 0.0050605787910 0.0051653291286 

𝜷𝟑 0.0124072200322 0.0124490977093 0.012150007096 

residual sum of squares 513.433302714000 520.557466898800 513.04802941 

solution time 17.9600000000010 17.5602100000021  
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Figure 2: Residual error behavior of PSO on Chwirut2 model 

 
Figure 3: Residual error behavior of GA on Chwirut2 model 

Table 4: DanWood model parameter estimates using PSO and GA method 

 

Parameters 

DanWood model  

PSO approach Certified values 

Best Worst  

𝜷𝟏 0.7688647754452 0.7688667739250 0.76886226176 

𝜷𝟐 3.860398508801 3.8603938891141 3.8604055871 

residual sum of squares 0.004317308429 0.0043173084943 0.0043173084083 

solution time 3.86039388911411 1.29999999998836  

 

 
GA approach Certified values 

Best Worst  

𝜷𝟏 0.7627743780613 0.7528803445936 0.76886226176 

𝜷𝟐 3.8774786144500 3.9054983341850 0.0038604055871 

residual sum of squares 0.0044387512934 0.0068581464626 0.0043173084083 

solution time 32.58 18.80  
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Figure 4: Residual error behavior of PSO on Danwood model 

 

 
Figure 5: Residual error behavior of GA on Danwood model 

Table 5: Misra1d model parameter estimates using PSO and GA method 

 

Parameters 

Misra1d model 

PSO approach Certified values 

Best Worst  

𝜷𝟏 437.3697077639100 437.3705698042650 437.36970754 

𝜷𝟐 0.0003022732443 0.0003022725033 0.0003.0227324449 

residual sum of squares 0.0564192952826 0.0564192961771 0.056419295283 

solution time 6.940000000002 4.3792093000000  

 

 
GA approach 

Certified values 
Best Worst 

𝜷𝟏 435.5897855361000 432.0244522139000 437.36970754𝐸 + 02 

𝜷𝟐 0.0003036449772 0.0003066898270 0.00030227324449 

residual sum of squares 0.0586445124135 0.0677440703519 0.056419295283 

solution time 16.89 16.14  
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Figure 6: Residual error behavior of PSO on Misra1d model 

 
Figure 7: Residual error behavior of GA on Misra1d model 

Table 6: Eckerle4 model parameter estimates using PSO and GA method 

 

Parameters 

Eckerle4 model 

PSO approach Certified values 

Best Worst  

𝜷𝟏 1.55438291079400 1.55438802087395 1.5543827178 

𝜷𝟐 4.0888329851750 4.08884628607915 4.0888321754 

𝜷𝟑 451.5412186098000 451.5412019034748 451.54121844 

Residual sum of squares 0.001463588748742 0.00146358876006 0.001.4635887487 

Solution time 1.860000000001 1.510000000002  

 

 
GA approach 

Certified values 
Best Worst 

𝜷𝟏 1.5534598114830 1.5447127801880 1.5543827178 

𝜷𝟐 4.0862854840560 4.0517526055230 4.0888321754 

𝜷𝟑 451.5425802263000 451.5741729681000 451.54121844𝐸 + 02 

residual sum of squares 0.001463809008197 0.001514428840176 0.0014635887487 

solution time 17.10 23.47  
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Figure 9: Residual error behavior of PSO on Eckerle4 model 

 
Figure 10: Residual error behavior of GA on Eckerle4 model 

Table 7: Rat42 model parameter estimates using PSO and GA method 

 

Parameters 

Rat42 model 

Certified values PSO approach 

Best Worst 

𝜷𝟏 72.46223755243584 57.7779974512380 72.462237576 

𝜷𝟐 2.61807684163544 47.6198008416280 2.6180768402 

𝜷𝟑 0.06735920007859 1.6842030577620 0.067359200066 

residual sum of squares 8.056522933811 1033.2946164260000 8.0565229338 

solution time 9.48999999999069 4.229999999981374  

 

 
GA approach 

Certified values 
Best Worst 

𝜷𝟏 72.4504230022400 72.8599321178700 72.462237576 

𝜷𝟐 2.6206826120620 2.5714411622070 2.6180768402 

𝜷𝟑 0.06743212044239 0.06594189874853 0.067359200066 

residual sum of squares 8.0577762138830 8.4472772131430 8.0565229338 

solution time 21.63 25.07000000001  
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Figure 11: Residual error behavior of Rat42 for PSO 

 
Figure 12: Residual error behavior of Rat42 for GA. 

DISCUSSION OF RESULTS 

Tables 3 through 7 and Figures 2 to 12 quantifies the 

performance of PSO and GA algorithm. The results showed 

that, in most cases, PSO outperforms GA with respect to 

computation time, accuracy of parameters estimates and 

minimum sum of squares. This finding is consistent with 

Chandrashaker et al. (2017) study which examined the 

correlation and efficiency of PSO over GA. They highlighted 

that PSO and GA is computationally superior to GA. Still, in 

this study, PSO struggled to maintain composure on the 

parameters values of Rat42 model. For instance, on Rat42 

model, PSO’s worst estimates for 𝜷𝟏, 𝜷𝟐, 𝜷𝟑  and RSS, 

considerably differ from optimal values of the model, this 

likely suggest that the algorithm could be limited by structural 

composition of an objective function. In spite of this potential 

limitation, we observed that PSO has a simple but powerful 

configuration which ensures that the entire solution landscape 

is adequately covered, which is apparent in its best estimates 

for each models. 

On the other hand, estimated values for GA approach are 

fairly comparable or similar to the optimal values of each 

nonlinear regression models. However, a detailed inspection 

(Tables 3 - 7) indicates that GA quality performance is stifled 

by its slow runtime, the fastest being 16.14 seconds on 

Misrald model (Table 6). We observed that the lag in GA’s 

solution time may be due to its sophisticated operators and 

concurrent operations involved at each generation. Recently, 

Ajay and Ausif (2016) proposed that a fine-tuned crossover 

operator would likely speed up and improve the quality of GA 

optimum values.  Also, we deduced that GA strength lie in its 

complex nature of search which enables it to maintain a 

balance in the number of iterations (generations) when 

tackling different structure of nonlinear regression problems, 

as displayed in Figures (2 – 12) above. This property indicate 

that functional complexity does not significantly alter the 

performance of GA. 

These results indicate that PSO and GA algorithms are both 

competitive and converge to respective global optimal values 

of the parameters of the nonlinear regression models at 

reasonable rates. Based on these findings, one can conclude 

that the PSO and GA techniques are quite effective. It is also 

worthy to note that the estimated values in this study are in 

consonance with other studies. Finally, due to the limited 

sample of experimental problems considered in this study it is 

impossible to state that one algorithm generally supersedes 

another in all situations. Notwithstanding, based on results 

from the experimental problems, it can be concluded that the 

PSO and GA techniques provide an alternative and reliable 

approach for obtaining parameter estimates of a wide range of 

nonlinear regression models.  
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CONCLUSION 

The use of particle swarm optimization and genetic algorithm 

for nonlinear regression parameter estimates present a simple, 

effective and reliable way to enhance optimal global values 

which further aids sound statistical judgments. In this study, 

we investigated the performance of particle swarm 

optimization and genetic algorithm for obtaining the 

parameter estimates of five nonlinear regression problems 

with varying level of difficulties (low, average, higher). We 

found that both PSO and GA estimates, when compared with 

other published sources can be considered effective for 

nonlinear regression unknown parameter estimate tasks. Our 

results show that while PSO solution speed is faster relative 

to GA, its number of iterations may be inconsistent for 

different problems. Fewer iterations and fairly accurate results 

could be a balance for GA’s slow computation time. 

Accordingly, we conclude that both algorithms are reliable 

and effective for varying tasks involving nonlinear regression 

parameter estimates. Future study may explore the use of a 

high quality Automatic Differentiation (AD) software 

(Wikipedia, 2022) for hybridizing gradient based algorithms 

with either of PSO or GA to efficiently tackle high-

dimensional nonlinear functions with rugged search spaces. 

Perhaps, the PSO or GA could be used to locate set of points 

that evolve to optimal global, then, a gradient based method 

that would accurately locate the deep local minimum. Future 

studies could also explore the usage of the PSO and GA 

techniques to solve optimization problems arising from other 

form of models such as nonlinear mixed effects models 

(Adeniyi et al., 2018), generalized mixed effects models 

(Ezenweke et al., 2022a), geo-spatial structured additive 

models (Ezenweke et al., 2022b) amongst others. 
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