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ABSTRACT 

The received signal strength is vital in telecommunication network or technology as it is affected by varying 

environmental factors such as temperature (T0C), relative humidity (H%), air quality index (m) and distance 

from base station (m). In this paper, we seek to find a regression model via a circumscribed central composite 

design that can adequately represent the functional relationship between the received signal strength and the 

respective factors applied to response surface methodology with the goal to obtain settings of these factors that 

would simultaneously optimize the received signal strength (Long Term Evolution (LTE), Third Generation 

network (3G) and second Generation network (2G)) technologies. The frequently utilized regression model is 

the parametric regression model (second-order model), though superior but lack credibility in terms of model 

misspecification and as a result, the optimum setting of the factors are miscalculated. In addressing the pitfall 

of the parametric regression model (PRM), we introduce a flexible adaptive local linear regression model that 

can capture local trend in the data, which ordinarily a misspecified PRM could not address. In the application, 

two regression models were used and the results show that the adaptive local linear regression model 

outperformed the parametric counterpart in terms of goodness-of-fit statistics, residual plot and optimization 

of the received signal strength.  

 

Keywords: Circumscribed central composite design, Local linear regression model, Parametric regression  

model, Received signal strength, Response surface methodology 

 

INTRODUCTION 

In this study, the data collected  was motivated to capture the 

variation in received signal strength for Long Term Evolution 

(LTE), Third generation network (3G) and Second generation 

network (2G) wireless communication technologies. The 

technologies are mostly affected by varying environmental 

factors which were observed between the time duration from 

January 2019 to March 2020 (Choudhary et al., 2021). The 

Influence of four factors; that is the varying Temperature 

(12°C to 48°C), Relative Humidity ( 25% to75%), Distance 

from Base Station (98 m to 300 m) and Air Quality index 

(AQI) for PM 2.5 ( 50 m to 500 m) were observed on 

Received Signal Strength of LTE (RSSLTE), 3G (RSS3G) 

and 2G (RSS2G) (Choudhary et al., 2021). These 

measurements on the factors were coded using appropriate 

experimental design technique and thereafter be transformed 

to Response Surface Methodology (RSM) data by a 

mathematical relation that needed to lie in the interval of zero 

and one inclusively. The objective of this study is to obtain a 

better goodness-of-fit statistics, residual plot and optimization 

results. 

RSM is a collection of mathematical and statistical techniques 

employed by Industrial Statistician and Engineers for 

empirical model building. In the modeling and analysis of 

data, the response is influenced by one or more explanatory 

variables (Eguasa et al., 2022). There are three main stages in 

RSM, namely, the Experimental Design Phase, the Modeling 

Phase, and the Optimization Phase (Castillo, 2007). 

In the Modeling phase of RSM, a fundamental assumption is 

that the relationship between the response variable  y and 𝑘 

explanatory variables 𝑥1,  𝑥2, … , 𝑥𝑘 ,  can be represented as: 

   𝑦𝑖 = 𝑓 (𝑥𝑖1,  𝑥𝑖2, … , 𝑥𝑖𝑘) + 𝜀𝑖 ,    𝑖 = 1,2,… , 𝑛                       (1) 

where the mean function 𝑓  denotes the true but unknown 

relationship between the response variable and the 𝑘 

explanatory variables, 𝜀𝑖 , 𝑖 = 1,2, … , 𝑛,  are random error 

terms assumed to have a normal distribution with mean zero 

and constant variance and 𝑛 is the sample size (Myers et al., 

2009; Wan and Birch, 2011).  

 

Parametric Regression Model 
The parametric regression models are superior if the user can 

specify a parametric form for the data, otherwise 

misspecified.  The nonparametric regression model is not 

restricted to a user specified form as in the parametric 

counterpart. In spite of its flexibility, nonparametric 

regression models are challenged in a study such as RSM due 

to idiosyncrasies of RSM data namely; 

 The study utilizes more than one explanatory variable 

(a term referred to as curse of dimensionality) 

  Sparseness of RSM data  

 Cost efficient design (small sample sizes). 

 

Ordinary least Squares  

The Ordinary Least Squares (OLS) is an existing regression 

models applied in the estimation of the unknown function 𝑓 

in Equation (1) (Anderson-Cook and Prewitt, 2005; Edionwe 

et al., 2016). The OLS model is applied in the estimation of 

the unknown parameters (coefficients) in the parametric 

(polynomial) model that the experimenter assumes adequate 

to approximate 𝑓 in Equation (1) (Wan and Birch, 2011). The 

OLS estimate �̂�𝑖
(𝑂𝐿𝑆)

 response in the 𝑖𝑡ℎ data point is given as:  

 

  �̂�𝑖
(𝑂𝐿𝑆)

= 𝒙𝒊(𝑿
𝑻𝑿)−𝟏𝑿𝑻𝒚                               (2) 
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where 𝒚 is a 𝑛 × 1 vector of response, 𝐗 is a n × p model 

matrix, 𝑝 is the number of model parameters (coefficients), 

𝑿𝑻  is the transpose of the matrix 𝐗, and 𝒙𝒊  is the 𝑖𝑡ℎ  row  

vector of the matrix 𝑿 (Pickle et al., 2008). 

In matrix notation, the vector of OLS estimated response is 

expressed as:  

   �̂�(𝑶𝑳𝑺) =

[
 
 
 
 𝒉𝟏

(𝑶𝑳𝑺)

𝒉𝟐
(𝑶𝑳𝑺)

⋮

𝒉𝒏
(𝑶𝑳𝑺)

]
 
 
 
 

𝒚 = 𝑯(𝑶𝑳𝑺)𝒚,                    (3)

  

where the vector 𝒉𝒊
(𝑶𝑳𝑺)

= 𝒙𝒊(𝑿
𝑻𝑿)−𝟏𝑿𝑻 is the 𝑖𝑡ℎ row of the 

𝑛 × 𝑛 OLS Hat matrix 𝑯(𝑶𝑳𝑺). 

The OLS model requires several assumptions to be met for 

valid interpretation of its parameter estimates. Furthermore, it 

performs poorly if the assumed polynomial model is 

inadequate for the data (Wan and Birch, 2011).  

A second-order linear regression model is given as:      

 

 𝑦𝑖 =  𝛽0 +  ∑ 𝛽𝑗
𝑘
𝑗=1 𝑥𝑖𝑗 + ∑ 𝛽𝑗𝑗𝑥𝑖𝑗

2𝑘
𝑗=1 + ∑ ∑ 𝛽𝑗𝑟

𝑘
𝑟=𝑗+1

𝑘−1
𝑗=1 𝑥𝑖𝑗𝑥𝑖𝑟 + 𝜀𝑖, i= 1,2,… , 𝑛;  𝑟 = 𝑗 + 1, 𝑗 + 2,… , 𝑘        (4)   

where 𝑥𝑖𝑗 ,  𝑥𝑖𝑟  are the explanatory variables; 𝛽0  is a constant coefficient; the varying coefficients 𝛽𝑗 ,  𝛽𝑗𝑗  and 𝛽𝑗𝑟  are the 

coefficients of linear, quadratic and interaction terms respectively. 

 

MATERIALS AND METHODS  

The philosophy behind the local linear regression model is 

because it is flexible and can adapt favourably in addressing 

boundary bias problem and is not restricted user specified 

form for the data (Eguasa et al., 2022). 

The Local Linear Regression (LLR) 

The LLR model is a nonparametric regression version of the 

weighted least squares model (Fan and Gijbels, 1995; Hardle 

et al., 2005; Kohler et al., 2014). 

 

 The LLR estimate, �̂�𝑖
(𝐿𝐿𝑅)

of 𝑦𝑖, is given as: 

�̂�𝑖
(𝐿𝐿𝑅)

= �̃�𝒊(�̃�
𝑻𝑾𝒊�̃�)−𝟏�̃�𝑻𝑾𝒊𝒚 = 𝒉𝒊

(𝑳𝑳𝑹)
𝒚,                  (5) 

where �̃�𝒊 is the 𝑖𝑡ℎ row of the LLR model matrix �̃� given as:  

�̃� = [

1 𝑥11 𝑥12 ⋯ 𝑥1𝑘

1 𝑥21 𝑥22 ⋯ 𝑥2𝑘

⋮
1

⋮ ⋮
𝑥𝑛1 𝑥𝑛2

⋮ ⋮
⋯ 𝑥𝑛𝑘

]

𝑛×(𝑘+1)

, 

where 𝑥𝑖𝑗 , 𝑖 = 1,2,… , 𝑛, 𝑗 = 1,2,… , 𝑘, denotes the value of the 𝑗𝑡ℎ  explanatory variable in the 𝑖𝑡ℎ data point, 𝑾𝒊 is a 𝑛 × 𝑛 

diagonal weights matrix given as:  

                       𝑾𝒊 = [

𝑤1𝑖

0
0

𝑤2𝑖

⋯
⋯

0
0

⋮ ⋮ ⋱ ⋮
0 0 0 𝑤𝑛𝑖

]

𝑛×𝑛

            (6) 

For instance, 𝑤1𝑖, 𝑖 = 1, is obtained from the product  kernel as: 

 𝑤11 = ∏𝑗=1
𝑘 𝐾 (

𝑥𝑖𝑗−𝑥1𝑗

𝑏
) ∑ ∏𝑗=1

𝑘 𝐾 (
𝑥𝑖𝑗−𝑥1𝑗

𝑏
)𝑛

𝑖=1⁄ , 𝑖 = 1,2,… , 𝑛, 𝑗 = 1,2,… , 𝑘,            (7)           

where 𝐾 (
𝑥𝑖𝑗−𝑥1𝑗

𝑏
) = 𝑒

−(
𝑥𝑖𝑗−𝑥1𝑗

𝑏
)
2

 is the simplified Gaussian kernel function and 𝑏𝑖, 0 < 𝑏 ≤ 1, 𝑖 = 1,2,… , 𝑛, 𝑗 = 1,2, … , 𝑘,  is 

the fixed bandwidth (smoothing parameter) (Myers et al., 2009; Eguasa, 2020). 

Thus, 

For 𝑖 = 1 in equation (7), we have: 

 

𝑾𝟏 =  [

𝑤11 0
0
⋮
0

𝑤12

⋮
0

⋯ 0
…
⋱
⋯

0
⋮

𝑤1𝑛

]

(𝑛×𝑛)

              (8) 

     𝑤11 =
∏𝑗=1

𝑘 𝐾(
𝑥1𝑗−𝑥1𝑗

𝑏
)

∑ ∏𝑗=1
𝑘 𝐾(

𝑥𝑝𝑗−𝑥1𝑗

𝑏
)𝑛

𝑝=1

 ,       𝑝 = 1,    2  ,    .    .    .   , 𝑛; 𝑗 = 1,  2,… , 𝑘.           (9) 

𝑤11 =
𝑆

[𝑆+𝑇+⋯+𝑈]
 ,𝑆 = 𝑒−(

𝑥11−𝑥11
𝑏

)2𝑒−(
𝑥12−𝑥12

𝑏
)2 …𝑒−(

𝑥1𝑘−𝑥1𝑘
𝑏

)2
, 𝑇 = 𝑒

−(
𝑥21−𝑥11

𝑏
)
2

𝑒
−(

𝑥22−𝑥12
𝑏

)
2

…𝑒
−(

𝑥2𝑘−𝑥1𝑘
𝑏

)
2

 

and 𝑈 = 𝑒
−(

𝑥𝑛1−𝑥11
𝑏

)
2

𝑒
−(

𝑥𝑛2−𝑥12
𝑏

)
2

…𝑒−(
𝑥𝑛𝑘−𝑥1𝑘

𝑏
)2

 

𝑤12 =
∏𝑗=1

𝑘 𝐾(
𝑥2𝑗−𝑥1𝑗

𝑏
)

∑ ∏𝑗=1
𝑘 𝐾(

𝑥𝑝𝑗−𝑥1𝑗

𝑏
)𝑛

𝑝=1

 ,       𝑝 = 1,    2  ,    .    .    .   , 𝑛; 𝑗 = 1,  2,… , 𝑘.                             (10) 

𝑤12 =
𝑉

[𝑊+𝑉+⋯+𝑍]
 ,      𝑉 = 𝑒−(

𝑥21−𝑥11
𝑏

)2𝑒−(
𝑥22−𝑥12

𝑏
)2 …𝑒−(

𝑥2𝑘−𝑥1𝑘
𝑏

)2
, 𝑊 = 𝑒−(

𝑥11−𝑥11
𝑏

)2𝑒−(
𝑥12−𝑥12

𝑏
)2 …𝑒

−(
𝑥1𝑘−𝑥1𝑘

𝑏
)
2

 

and  𝑍 = 𝑒
−(

𝑥𝑛1−𝑥11
𝑏

)
2

𝑒
−(

𝑥𝑛2−𝑥12
𝑏

)
2

…𝑒−(
𝑥𝑛𝑘−𝑥1𝑘

𝑏
)2
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       ⋮ 

                    𝑤1𝑛 =
∏𝑗=1

𝑘 𝐾(
𝑥𝑛𝑗−𝑥1𝑗

𝑏
)

∑ ∏𝑗=1
𝑘 𝐾(

𝑥𝑝𝑗−𝑥1𝑗

𝑏
)𝑛

𝑝=1

 ,       𝑝 = 1,    2  ,    .    .    .   , 𝑛; 𝑗 = 1,  2,… , 𝑘.       (11)

  

𝑤1𝑛  =
𝑅

[𝑀+𝐻+⋯+𝑅]
            (12) 

𝑅 = 𝑒
−(

𝑥𝑛1−𝑥11
𝑏

)
2

𝑒
−(

𝑥𝑛2−𝑥12
𝑏

)
2

…𝑒
−(

𝑥𝑛𝑘−𝑥1𝑘
𝑏

)
2

, 𝐻 = 𝑒
−(

𝑥21−𝑥11
𝑏

)
2

𝑒
−(

𝑥22−𝑥12
𝑏

)
2

…𝑒
−(

𝑥2𝑘−𝑥1𝑘
𝑏

)
2

 

 

and 𝑀 = 𝑒−(
𝑥11−𝑥11

𝑏
)2𝑒−(

𝑥12−𝑥12
𝑏

)2 …𝑒
−(

𝑥1𝑘−𝑥1𝑘
𝑏

)
2

 

 

Experimental design 

In RSM, the number of factors is usually more than one. 

Hence, if the number of factors is too large, it may directly 

affect the response (Received signal strength) of interest, and 

since not all factors are desirable to be included in the 

experimental design for reason due to cost implication, it 

required the use of factor screening approach or two-level full 

factorial design to identify the variables with main effects 

(Montgomery, 2009; Nair et al., (2014); Eguasa et al., 2022).  

Choice of adequate levels to be studied for the explanatory 

variables is also important as it can affect model accuracy. 

The Experimental Design phase permits an appropriate design 

that can provide adequate and considerable estimation 

relationship between the response and one or more factors. 

Usually applied DOEs in RSM include: 2𝑘  full factorial 

design, 3𝑘  full factorial design, and the Central Composite 

Design (CCD).   

 

Table 1:  Coded stages and range for the design of experiments (Choudhary et al., 2021) 

Factors or Input parameters Symbol Coded Levels 

-2(-𝜶) -1(Low) 0(Medium) 1(High) 2(+𝜶) 

Temperature (0C) Temp 12 23 30 40 48 

Relative Humidity (%) RH 25 37 50 63 75 

Distance from Base Station (m) DFBS 98 150 200 250 300 

Air Quality Index (m) AQI 50 150 250 370 500 

 

The central composite design 

A Central Composite Design allows for the building of the 

second-order regression model in a given response that is 

frequently used for process optimization (Sivarao et al., 2010; 

Eguasa, 2020). The three types of CCD are based on the 

locations of the factorial and star points in the design space 

namely; Circumscribed CCD (CCCD), Faced-Centered CCD 

and the Inscribed CCD. 

The circumscribed central composite design 

The most common CCD utilized in RSM is the circumscribed 

CCD because it allows for the estimation of curvature and the 

values of star points maintain rotatability which in turn 

depends on the factorial point of the design (Dutka et al., 

2015).  

The circumscribed CCD involves three types of trials namely; 

two levels (2𝑘) full factorial designs, 2𝑘  axial (star) points 

which are located at distance 𝛼 = √2𝑘4
 from the center point 

and 𝑘𝑐 ,  kth central points (Bezerra et al., 2008).  The 

Circumscribed CCD can express geometrically as: 

 
Figure 1:  Circumscribed CCD (17 points, when k=3) with factorial design points (8 points), axial points (6 points)  and with 

at least kth central point ( 3 points).  

Sources: Nair et al., (2014); Peasura (2015) 

 

In this study, the CCCD has been utilized because it is cost efficient, maintain rotatability and accommodates small number of 

experimental runs in the design.  

The mathematical expression for the CCCD is given as: 

𝐶𝐶𝐶𝐷 =  2𝑘 + 2𝑘 + 𝑘𝑐       (13)

  

where 2𝑘 is the factorial portion, 2𝑘 is the axial or star points and 𝑘𝑐  is at least kth central points utilized in the design. In this 

design 𝑘 = 4 and 𝑘𝑐 = 7 which from equation (13) sum up to 31 experimental runs. 
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Table 2: Experimental coded level for RSM data (Choudhary et al., 2021) 

Exptal. 

Run 

Temp. (0C) RH (%) DFBS (m) AQI (m) RSSLTE 

(dBm) 

RSS3G 

(dBm) 

RSS2G 

(dBm) 

1 -1(23) -1(37) -1(150) -1(150) -123.60 -97.59 -86.68 

2 1(40) -1(37) -1(150) -1(150) -107.00 -84.00 -75.00 

3 -1(23) 1(63) -1(150) -1(150) -107.00 -84.00 -75.00 

4 1(40) 1(63) -1(150) -1(150) -123.00 -97.00 -86.60 

5 -1(23) -1(37) 1(250) -1(150) -116.55 -92.35 -82.63 

6 1(40) -1(37) 1(250) -1(150) -108.75 -86.50 -78.13 

7 -1(23) 1(63) 1(250) -1(150) -120.15 -95.10 -84.72 

8 1(40) 1(63) 1(250) -1(150) -97.20 -77.19 -69.29 

9 -1(23) -1(37) -1(150) 1(370) -108.75 -86.50 -78.13 

10 1(40) -1(37) -1(150) 1(370) -103.86 -81.22 -74.54 

11 -1(23) 1(63) -1(150) 1(370) -107.00 -84.00 -75.00 

12 1(40) 1(63) -1(150) 1(370) -89.00 -68.00 -62.80 

13 -1(23) -1(37) 1(250) 1(370) -100.80 -79.94 -71.38 

14 1(40) -1(37) 1(250) 1(370) -107.00 -84.00 -75.00 

15 -1(23) 1(63) 1(250) 1(370) -110.90 -87.00 -77.55 

16 1(40) 1(63) 1(250) 1(370) -105.15 -83.30 -73.92 

17 -2(12) 0(50) 0(200) 0(250) -115.80 -91.74 -82.18 

18 2(48) 0(50) 0(200) 0(250) -102.70 -81.60 -73.50 

19 0(30) -2(25) 0(200) 0(250) -112.35 -89.10 -80.22 

20 0(30) 2(75) 0(200) 0(250) -104.00 -81.55 -73.02 

21 0(30) 0(50) -2(98) 0(250) -111.50 -87.60 -77.85 

22 0(30) 0(50) 2(300) 0(250) -112.20 -88.99 -81.09 

23 0(30) 0(50) 0(200) 0(250) -107.00 -84.00 -73.00 

24 0(30) 0(50) 0(200) 0(250) -107.00 -84.00 -73.00 

25 0(30) 0(50) 0(200) -2(50) -105.00 -83.04 -73.79 

26 0(30) 0(50) 0(200) 2(500) -108.60 -85.79 -75.88 

27 0(30) 0(50) 0(200) 0(250) -120.00 -94.84 -84.59 

28 0(30) 0(50) 0(200) 0(250) -97.35 -77.45 -69.42 

29 0(30) 0(50) 0(200) 0(250) -107.00 -84.00 -75.00 

30 0(30) 0(50) 0(200) 0(250) -101.55 -80.55 -71.83 

31 0(30) 0(50) 0(200) 0(250) -119.00 -94.50 -82.80 

 

Hereafter, circumscribed CCD shall be referred to as CCCD 

for easy reference. A CCCD has an advantage over 3𝑘  full 

factorial design because it reduces the number of 

experimental runs (e.g. 31points in CCCD as against 81 points 

in 3𝑘 design for k= 4). 

 

Data transformation using central composite design 

(CCD) to RSM data 

The values of the explanatory variables are coded between 0 

and 1. The data collected via a CCD is transformed by a 

mathematical relation: 

 𝑥𝑁𝐸𝑊 =
𝑀𝑖𝑛(𝑥𝑂𝐿𝐷)−𝑥0

(𝑀𝑖𝑛(𝑥𝑂𝐿𝐷)−𝑀𝑎𝑥(𝑥𝑂𝐿𝐷))
        (14)

  

where 𝑥𝑁𝐸𝑊  is the transformed value, 𝑥0 is the target value 

that needed to be transformed in the vector containing the old 

coded value,  represented as 𝑥𝑂𝐿𝐷 , Min (𝑥𝑂𝐿𝐷) 

and 𝑀𝑎𝑥(𝑥𝑂𝐿𝐷) are the minimum and maximum values in the 

vector 𝑥𝑂𝐿𝐷 respectively, (Eguasa et al., 2022). 

The natural or coded variables in Table 1 can be transformed 

to explanatory variables in Table 2 using Equation (14)  

Target points needed to be transformed for location 2 under 

the coded variables are given below: 

Target points 𝑥0: 1 ,−1, −1,−1;  𝑀𝑖𝑛(𝑥𝑂𝐿𝐷) : −
2 ,−2,−2,−2;  𝑀𝑎𝑥(𝑥𝑂𝐿𝐷): 2, 2, 2, 2  

 

𝑥𝑁𝐸𝑊 =
𝑀𝑖𝑛(𝑥𝑂𝐿𝐷) − 𝑥0

(𝑀𝑖𝑛(𝑥𝑂𝐿𝐷) − 𝑀𝑎𝑥(𝑥𝑂𝐿𝐷))
 

𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑥1 ∶  𝑥21 =
−2 − (1)

((−2) − (2))
= 0.7500 

𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑥2 ∶  𝑥22 =
−2 − (−1)

((−2) − (2))
= 0.2500 

𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑥3 ∶  𝑥23 =
−2 − (−1)

((−2) − (2))
= 0.2500 

𝐸𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑜𝑟𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑥4 ∶  𝑥24 =
−2 − (−1)

((−2) − (2))
= 0.2500 

 

where 𝑥1 =  Temp. (0C), 𝑥2 = RH (%), 𝑥3 = DFBS (m), 𝑥4 =  AQI 
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Table 3: Experimental CCCD for the transformed RSM data that are coded btw 0 and 1 

Exp. 

Run 

Temp. (0C) RH (%) DFBS (m) AQI (m) RSSLTE 

(dBm) 

RSS3G 

(dBm) 

RSS2G 

(dBm) 

1 0.2500(23) 0.2500(37) 0.2500(150) 0.2500(150) -123.60 -97.59 -86.68 

2 0.7500(40) 0.2500(37) 0.2500(150) 0.2500(150) -107.00 -84.00 -75.00 

3 0.2500(23) 0.7500(63) 0.2500(150) 0.2500(150) -107.00 -84.00 -75.00 

4 0.7500(40) 0.7500(63) 0.2500(150) 0.2500(150) -123.00 -97.00 -86.60 

5 0.2500(23) 0.2500(37) 0.7500(250) 0.2500(150) -116.55 -92.35 -82.63 

6 0.7500(40) 0.2500(37) 0.7500(250) 0.2500(150) -108.75 -86.50 -78.13 

7 0.2500(23) 0.7500(63) 0.7500(250) 0.2500(150) -120.15 -95.10 -84.72 

8 0.7500(40) 0.7500(63) 0.7500(250) 0.2500(150) -97.20 -77.19 -69.29 

9 0.2500(23) 0.2500(37) 0.2500(150) 0.7500(370) -108.75 -86.50 -78.13 

10 0.7500(40) 0.2500(37) 0.2500(150) 0.7500(370) -103.86 -81.22 -74.54 

11 0.2500(23) 0.7500(63) 0.2500(150) 0.7500(370) -107.00 -84.00 -75.00 

12 0.7500(40) 0.7500(63) 0.2500(150) 0.7500(370) -89.00 -68.00 -62.80 

13 0.2500(23) 0.2500(37) 0.7500(250) 0.7500(370) -100.80 -79.94 -71.38 

14 0.7500(40) 0.2500(37) 0.7500(250) 0.7500(370) -107.00 -84.00 -75.00 

15 0.2500(23) 0.7500(63) 0.7500(250) 0.7500(370) -110.90 -87.00 -77.55 

16 0.7500(40) 0.7500(63) 0.7500(250) 0.7500(370) -105.15 -83.30 -73.92 

17 0.0000(12) 0.5000(50) 0.5000(200) 0.5000(250) -115.80 -91.74 -82.18 

18 1.0000(48) 0.5000(50) 0.5000(200) 0.5000(250) -102.70 -81.60 -73.50 

19 0.5000(30) 0.0000(25) 0.5000(200) 0.5000(250) -112.35 -89.10 -80.22 

20 0.5000(30) 1.0000(75) 0.5000(200) 0.5000(250) -104.00 -81.55 -73.02 

21 0.5000(30) 0.5000(50) 0.0000(98) 0.5000(250) -111.50 -87.60 -77.85 

22 0.5000(30) 0.5000(50) 1.0000(300) 0.5000(250) -112.20 -88.99 -81.09 

23 0.5000(30) 0.5000(50) 0.5000(200) 0.5000(250) -107.00 -84.00 -73.00 

24 0.5000(30) 0.5000(50) 0.5000(200) 0.5000(250) -107.00 -84.00 -73.00 

25 0.5000(30) 0.5000(50) 0.5000(200) 0.0000(50) -105.00 -83.04 -73.79 

26 0.5000(30) 0.5000(50) 0.5000(200) 1.0000(500) -108.60 -85.79 -75.88 

27 0.5000(30) 0.5000(50) 0.5000(200) 0.5000(250) -120.00 -94.84 -84.59 

28 0.5000(30) 0.5000(50) 0.5000(200) 0.5000(250) -97.35 -77.45 -69.42 

29 0.5000(30) 0.5000(50) 0.5000(200) 0.5000(250) -107.00 -84.00 -75.00 

30 0.5000(30) 0.5000(50) 0.5000(200) 0.5000(250) -101.55 -80.55 -71.83 

31 0.5000(30) 0.5000(50) 0.5000(200) 0.5000(250) -119.00 -94.50 -82.80 

 

Table 4: Experimental CCCD for the transformed RSM data that are coded between 0 and 1 

Exp. Run 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚𝟏 (𝑹𝑺𝑺𝑳𝑻𝑬) 

(Nano Watt) 

𝒚𝟐(𝑹𝑺𝑺𝟑𝑮) 

(Nano 

Watt) 

𝒚𝟑(𝑹𝑺𝑺𝟐𝑮) 

(Nano 

Watt) 

1 0.2500 0.2500 0.2500 0.2500 0 0.17 2.15 

2   0.7500 0.2500 0.2500 0.2500 0.02 3.98 31.16 

3 0.2500 0.7500 0.2500 0.2500 0.02 3.98 31.16 

4 0.7500 0.7500 0.2500 0.2500 0 0.19 2.19 

5 0.2500 0.2500 0.7500 0.2500 0.002 0.58 5.46 

6 0.7500 0.2500 0.7500 0.2500 0.01 2.24 15.4 

7 0.2500 0.7500 0.7500 0.2500 0 0.31 3.37 

8 0.7500    0.7500 0.7500 0.2500 0.19 19.09 117 

9 0.2500 0.2500 0.2500 0.7500 0.013 2.24 15.38 

10 0.7500 0.2500 0.2500 0.7500 0.04 7.55 35.2 

11 0.2500 0.7500 0.2500 0.7500 0.02 3.98 31.6 

12 0.7500 0.7500 0.2500 0.7500 1.26 1.58 525 

13 0.2500 0.2500 0.7500 0.7500 0.08 10.14 72.77 

14 0.7500 0.2500 0.7500 0.7500 0.02 3.98 31.6 

15 0.2500 0.7500 0.7500 0.7500 0.009 1.99 17.58 

16 0.7500 0.7500 0.7500 0.7500 0.03 4.67 40.55 

17 0.0000 0.5000 0.5000 0.5000 0.003 0.67 6.05 

18 1.0000 0.5000 0.5000 0.5000 0.05 6.92 44.7 

19 0.5000 0.0000 0.5000 0.5000 0.006 1.23 9.5 

20 0.5000 1.0000 0.5000 0.5000 0.04 6.99 49.8 

21 0.5000 0.5000 0.0000 0.5000 0.007 1.74 16.4 

22 0.5000 0.5000 1.0000 0.5000 0.006 1.29 7.78 

23 0.5000 0.5000 0.5000 0.5000 0.02 3.98 31.6 

24 0.5000 0.5000 0.5000 0.5000 0.02 3.98 31.6 

25 0.5000 0.5000 0.5000 0.0000 0.03 4.96 41.8 

26 0.5000 0.5000 0.5000 1.0000 0.02 2.64 25.8 

27 0.5000 0.5000 0.5000 0.5000 0.001 0.33 3.48 

28 0.5000 0.5000 0.5000 0.5000 0.18 1.79 114.28 
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29 0.5000 0.5000 0.5000 0.5000 0.02 3.98 31.6 

30 0.5000 0.5000 0.5000 0.5000 0.07 10 65.5 

31 0.5000 0.5000 0.5000 0.5000 0.001 0.35 52.5 

 

Genetic algorithm  

Once the data has been modeled, the resulting fitted curve is 

used for determining the setting of the explanatory variables 

that optimizes the response based on the signal strength 

requirement. This task summarizes the aim of the 

optimization phase of RSM (Mays et al., 2001; Johnson and 

Montgomery, 2009). In this paper, we perform all the 

optimization tasks using the Genetic Algorithm (GA) 

optimization toolbox available in Matlab software. 

 

The individual desirability 

For multiple response studies that involve 𝑚 responses, 𝑚 >
1,  it is essential to obtain an optimal setting of the explanatory 

variables that simultaneously optimize all the responses with 

respect to their individual signal strength requirements (He et 

al., 2012; Sestelo et al., 2017; Wan and Birch 2011). The most 

popular criterion applied in the optimization of multiple 

responses is the Desirability function.  

Based on the production requirement of a response, the desirability function transforms the estimated response, �̂�𝑝(𝒙) into a 

scalar measure, 𝑑𝑝 (�̂�𝑝(𝒙)).  

For larger-the-better (LTB) response, 𝑑1(�̂�1(𝒙)) is given as:   

 𝑑1(�̂�1(𝒙))    =  {

0,

{
�̂�1(𝒙)−𝐿

𝑇−𝐿
}
𝑡1

1,

,

       �̂�1(𝒙) < 𝐿

               𝐿 ≤ �̂�1(𝒙) ≤ 𝑇

       �̂�1(𝒙) > 𝑇,

,   𝑠. 𝑡 𝒙𝜖 𝜑 ,    (15)  

 

For larger-the-better (LTB) response, 𝑑2(�̂�2(𝒙)) is given as:   

 𝑑2(�̂�2(𝒙))    =  {

0,

{
�̂�2(𝒙)−𝐿

𝑇−𝐿
}
𝑡1

1,

,

       �̂�2(𝒙) < 𝐿

               𝐿 ≤ �̂�2(𝒙) ≤ 𝑇

       �̂�2(𝒙) > 𝑇,

,   𝑠. 𝑡 𝒙𝜖 𝜑 ,    (16)  

 

For larger-the-better (LTB) response, 𝑑3(�̂�3(𝒙)) is given as:   

 𝑑3(�̂�3(𝒙))    =  {

0,

{
�̂�3(𝒙)−𝐿

𝑇−𝐿
}
𝑡1

1,

,

       �̂�3(𝒙) < 𝐿

               𝐿 ≤ �̂�3(𝒙) ≤ 𝑇

       �̂�3(𝒙) > 𝑇,

,   𝑠. 𝑡 𝒙𝜖 𝜑 ,    (17)  

 

In all cases, 𝑡1 is the parameter that controls the shape of the desirability function, enabling the user to accommodate nonlinear 

desirability functions. However, for RSM data, the values of 𝑡1 is taken to be 1 (Castillo, 2007; He et al., 2012).  

 

The overall desirability 

The overall objective of the desirability criterion is to obtain the setting of the explanatory variables that maximize the 

geometric mean (D) of all the individual desirability measures given as: 

 

𝐷 = 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒√𝑑1(�̂�1(𝒙))𝑑2(�̂�2(𝒙))𝑑3(�̂�3(𝒙))
3

    (18) 

 

RESULTS AND DISCUSSION 

In Table 5, the fixed bandwidths for 𝑦1 (𝑅𝑆𝑆𝐿𝑇𝐸𝐹𝐵), 𝑦2 (𝑅𝑆𝑆3𝐺𝐹𝐵 and  𝑦3 (𝑅𝑆𝑆2𝐺𝐹𝐵) were obtained via genetic algorithm 

tool in Matlab and it is only applicable to local linear regression model, since it accommodates the diagonal weight matrix as 

given in equation (6). 

 

Table 5: Fixed bandwidths for responses; 𝒚𝟏 (𝑹𝑺𝑺𝑳𝑻𝑬𝑭𝑩),  𝒚𝟐 (𝑹𝑺𝑺𝟑𝑮𝑭𝑩) and 𝒚𝟑 (𝑹𝑺𝑺𝟐𝑮𝟐𝑭𝑩)  

Response Model 𝑭𝑰𝑿𝑬𝑫 𝑩𝑨𝑵𝑫𝑾𝑰𝑫𝑻𝑯 (𝒃) 

𝑦1 (𝑅𝑆𝑆𝐿𝑇𝐸𝐹𝐵) 
𝑂𝐿𝑆𝐿𝑇𝐸 NOT APPLICABLE 

𝐿𝐿𝑅𝐿𝑇𝐸𝐹𝐵 b =0.1000 

𝑦2 (𝑅𝑆𝑆3𝐺𝐹𝐵) 
𝑂𝐿𝑆3𝐺 NOT APPLICABLE 

𝐿𝐿𝑅3𝐺𝐹𝐵 b =0.2600 

𝑦3 (𝑅𝑆𝑆2𝐺2𝐹𝐵) 𝑂𝐿𝑆2𝐺 NOT APPLICABLE 

 𝐿𝐿𝑅2𝐺  b =0.1000 

 

Table 6: Model goodness-of-fits statistics for received signal strength data 

Response Model 𝑫𝑭 𝑷𝑹𝑬𝑺𝑺∗∗ 𝑷𝑹𝑬𝑺𝑺 𝑺𝑺𝑬 𝑴𝑺𝑬 𝑹𝟐(%) 𝑹𝑨𝒅𝒋
𝟐 (%) 

𝑦1 (𝑅𝑆𝑆𝐿𝑇𝐸𝐹𝐵) 
𝑂𝐿𝑆 16.0000 0.2480 3.9686 0.7078 0.0442 53.5626 12.9299 

𝐿𝐿𝑅𝐹𝐵 7.0000 0.0858 2.7876 0.0252 0.0036 98.3500 92.9200 

𝑦2 (𝑅𝑆𝑆3𝐺𝐹𝐵) 
𝑂𝐿𝑆 16.0000 81.0873 1297.40 275.5207 17.2200 40.9796 -10.6632 

𝐿𝐿𝑅𝐹𝐵 9.9907 21.0072 649.9338 77.2716 7.7344 83.4500 50.3000 
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𝑦3 (𝑅𝑆𝑆2𝐺𝐹𝐵) 𝑂𝐿𝑆 16.0000 43070 689110 125370 7835.50 51.6268 9.3036 

 𝐿𝐿𝑅𝐹𝐵 7.0000 15144 490530 7784.50 1112.10 97.0000 87.1300 

 

The results obtained from Table 6, clearly shows that 𝐿𝐿𝑅𝐹𝐵  

from the respective received signal strength gave the better 

performance statistic as compared with OLS, for the multi-

response problem. For  𝑦1 (𝑅𝑆𝑆𝐿𝑇𝐸𝐹𝐵) ,  𝑦2 (𝑅𝑆𝑆3𝐺𝐹𝐵) , 

 𝑦3 (𝑅𝑆𝑆2𝐺𝐹𝐵) the LLR for fixed bandwidth outperformed 

the OLS in terms PRESS**, PRESS, SSE, MSE, R2 and R2Adj 

and gives a better predictive power over OLS. 

 

 
Figure 2: Residual plot for the two regression models LLR FB and OLS for  𝑦1 (𝑅𝑆𝑆𝐿𝑇𝐸𝐹𝐵) 

 

In Figure 2, the local linear regression model with fixed 

bandwidth gave a smaller residual (red line) over OLS with 

residual line spread away more from the zero residual line. 

This is a clear indication that LLR with a FB is a better 

regression model over the OLS. 

 
Figure 3: Residual plot for the two regression models LLR FB and OLS for  𝑦2 (𝑅𝑆𝑆3𝑔𝐹𝐵)  

 

In Figure 3, the local linear regression model with fixed 

bandwidth gave a smaller residual (red line) over OLS with 

residual line spread away more from the zero residual line. 

This is a justification of result obtained from the goodness-of-

fit statistics that LLR with a FB is a better regression model 

over the OLS. 

 

 
Figure 4: Residual plot for the two regression models LLR FB and OLS for  𝑦3 (𝑅𝑆𝑆2𝑔𝐹𝐵)  

 

In Figure 4, the LLR with a local linear regression model with 

fixed bandwidth (LLR with a FB) gave a smaller residual (red 

line) over OLS with residual line spread away more from the 

zero residual line. This is a justification of result obtained 

from the goodness-of-fit statistics that LLR with a FB is a 

better regression model over the OLS. 
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Table 7: Model optimal solution based on the Desirability function for  𝒚𝟏 (𝑹𝑺𝑺𝑳𝑻𝑬𝑭𝑩) ,  𝒚𝟐 (𝑹𝑺𝑺𝟑𝑮𝑭𝑩) , 

 𝒚𝟑 (𝑹𝑺𝑺𝟐𝑮𝑭𝑩) 

Model 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 �̂�𝟏 �̂�𝟐 �̂�𝟑 𝒅𝟏(�̂�𝟏) 𝒅𝟐(�̂�𝟐) 𝒅𝟑(�̂�𝟑) 𝑫(%) 

𝑂𝐿𝑆 0.3764 1.0000 0.7155 0.5000 -0.0426 6.2472 2.7043 0.0000 1.0000 1.0000 0.0000 

𝐿𝐿𝑅𝐹𝐵 0.8394 0.5549 0.8791 0.9946 0.0054 4.0983 47.2905 1.0000 1.0000 1.0000 100.00 

 

From Table 7, 𝐿𝐿𝑅𝐹𝐵 provides the best received signal 

strength for LTE, 3G and 2G technologies with optimum 

setting of the factors; atmosphere temperature (TEMP), 

Relative Humidity (RH), Air Quality Index (AQI) and 

Distance from Base Station (DFBS) over OLS and the four 

settings of the factors were found 0.8394 (40°C), 0.5549 

(37%), 0.8791 (150 m) and 0.9946 (150 m) respectively to 

give the best process satisfaction for the received signal 

strength. Whereas, the optimum received signal strength were 

found to be  �̂�1 = 0.0054 and its equivalent are 0.02 (Nano 

Watt) and -107(dBm) for 𝑦1 (𝑅𝑆𝑆𝐿𝑇𝐸𝐹𝐵); �̂�2 =4.0983 and 

its equivalent are 3.98 (Nano Watt) and -84(dBm) for 

 𝑦2 (𝑅𝑆𝑆3𝐺𝐹𝐵)  and �̂�3 =  47.2905 and its equivalent are 

31.16 (Nano Watt) and -75(dBm) for  𝑦3 (𝑅𝑆𝑆2𝐺𝐹𝐵) 
communication technologies respectively. 

 

CONCLUSION 

In this study, we presented a CCCD in other to capture 

rotatability and curvature in the data, a 𝐿𝐿𝑅𝐹𝐵 for adequate 

fitting of the data, and lastly, to find optimum settings of the 

factors that optimizes  𝑦1 (𝑅𝑆𝑆𝐿𝑇𝐸𝐹𝐵),  𝑦2 (𝑅𝑆𝑆3𝐺𝐹𝐵) 

and𝑦3 (𝑅𝑆𝑆2𝐺𝐹𝐵 ) respectively. The performance statistics 

carried out is a clear indication that the 𝐿𝐿𝑅𝐹𝐵 outperformed 

the OLS for LTE with (PRESS**= 0.0858, PRESS = 2.7876, 

SSE = 0.0252, MSE = 0.0036, R2= 98.35% and R2Adj = 

92.92%); 3G  with (PRESS**= 21.0072, PRESS = 649.9338, 

SSE = 77.2716, MSE = 7.7344, R2= 83.45% and R2Adj = 

50.30%) and 2G with (PRESS**= 15144, PRESS = 490530, 

SSE = 7784.50, MSE = 1112.10, R2= 97.00% and R2Adj = 

87.13%)  for the three communication technologies and also 

provided minimum residual plots for their respective network. 

The optimization results show that the optimum received 

signal strength were found to be 0.02 (Nano Watt) and (-107 

against existing -77.92) (dBm) for  𝑦1 (𝑅𝑆𝑆𝐿𝑇𝐸𝐹𝐵) ; 3.98 

(Nano Watt) and (-84 against existing -60.03) (dBm) for 

 𝑦2 (𝑅𝑆𝑆3𝐺𝐹𝐵)  and 31.16 (Nano Watt) and (-75 against 

existing 58.13) (dBm) for  𝑦3 (𝑅𝑆𝑆2𝐺𝐹𝐵)  communication 

technologies respectively.  
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