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ABSTRACT 

The evolution of multicore technology has come with new challenges to process scheduling. An intelligent 

process resource requirement prediction framework in a factored operating system (FOS) was developed using 

machine learning. To simulate this system, an array of positive integer numbers in the interval of 1 to 10, with 

a maximum length of 20, was used to represent process. The properties of this array (array length and sum of 

the array elements) were used as the parameters of the application processes. These served as input into the 

machine learning network to predict the process’ size and hence, the resource requirements for each process. 

The framework was simulated using Java 2EE. Experimental results of the framework showed that prediction 

of processes’ sizes with enhanced resource requirement allocation, and hence, required faster and efficient 

scheduling of processes to multiple resource cores, with an increased system throughout.  

 

Keywords: Machine Learning, Multicore, Resource Prediction, Factored Operating System, process  

scheduling 

 

INTRODUCTION 

Job processes and threads in an operating system (OS) gain 

access to system resources by scheduling algorithms. The 

requirement to execute multiple processes at a time with the 

present-day systems and concurrent execution is the 

propelling force behind scheduling algorithms. Distinct 

scheduling methods have emerged, among which several have 

been used to overcome many problems in scheduling, such as 

which process to give processor time. Among these methods 

applied in tackling scheduling problems are the branch and 

bound, critical path methods, priority rules, dynamic 

programming, shortage job first, etc., to determine which 

process gets the processor time (Silberschatz et al., 2013).  

According to Koya (2017), the traditional scheduling 

algorithms, in theory, are First-Come-First-Serve (FCFS) 

Scheduling, Round Robin (RR) Scheduling, Priority 

Scheduling, Shortest Job First (SJF) Scheduling, Shortest 

Remaining Time First (SRTF) Scheduling, Multilevel Queue 

Scheduling (MQS) and multilevel Feedback Queue (MFQ) 

Scheduling. These scheduling algorithms are either 

preemptive or non-preemptive.  

According to Amur et al. (2008), the time expended by a 

process executing on a processor is quantified as burst length. 

Estimating the next CPU burst of a process is complex and 

requires much effort and calculations. The lengths of the next 

CPU burst can mathematically be predicted using a traditional 

method known as “Exponential Averaging,” which uses the 

process history to estimate the next processor time 

(Silberschatz et al., 2013).  

In Grids Computing, where multi-level platforms from 

multiple locations provide a wide range of services to reach a 

common goal, scheduling tasks is considered a critical 

component of a Grids Computing infrastructure. On this 

platform, administrative domains are searched to allocate a 

task to a machine or, on the contrary, schedule tasks to several 

resources at one or more sites (Shah et al., 2010). 

Scheduling in the grid consists of three main phases: 

discovering available resources phase, apportioning and 

attributing tasks to executable resources phase, and finally, 

the tasks executing phase. Dedicated machines are usually 

used to apportion tasks to executable resources in Grids 

Computing due to their addiction to the duration of processor 

time. Consequently, a dedicated machine must be able to 

estimate the succeeding processor time duration in Grids 

Computing scheduling techniques (David, 1998). 

Helmy et al. (2015) proposed a Machine Learning (ML) based 

approach to estimate the length of the CPU bursts for 

processes. The proposed approach aimed to select the most 

significant attributes of the process using feature selection 

techniques and then predict the CPU burst for the process in 

the grid. ML techniques such as Support Vector Machine 

(SVM) and K-Nearest Neighbors (K-NN), Artificial Neural 

Networks (ANN), and Decision Trees (DT) were used to test 

and evaluate the proposed approach using a grid workload 

dataset named “GWA-T-4 AuverGrid”. The experimental 

results show a strong linear relationship between the process 

attributes and the burst CPU time. Moreover, K-NN performs 

better in nearly all approaches regarding CC and RAE. 

Furthermore, applying attribute selection techniques 

improved the performance in terms of space, time, and 

estimation. 

As the scalability of the processor core slows, ascribable to 

Moore’s law which speeds up research in modern computing 

architecture, a demand exists to consider new OS models. 

Wentzlaff et al. (2011) described FOS as an OS for 1000 

cores, executing each task on a separate core. Their idea was 

concerning the future abundant processor cores, such that 

devoting a core to a single process will maximize the benefits 

of multicore technology. According to the authors, the 

scheduling method may take a different approach from the 

current traditional method. They affirmed that scheduling in 

FOS becomes a space-sharing approach as opposed to the 

time multiplexing of the conventional OS.  

According to Wang et al. (2019), space sharing is when 

multiple tasks run on physical resources simultaneously. Still, 

the resources are physically divided into multiple partitions 
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that the tasks execute concurrently, as opposed to time-

sharing, where processes run simultaneously. Still, only one 

process runs on the shared resources at a time. Laplante & 

Milojicic (2016) also envision that by 2030 OS will be created 

using a new technology paradigm that would be nearly 

unrecognizable today. Formulating better scheduling 

techniques is a central and most profound knowledge of 

process execution behavior that is very useful. Negi & 

Kishore (2004) studied the approaches to the process 

characterization problem. They also proposed a novel method 

to characterize and categorize process execution behaviors 

using machine learning techniques that learn from previous 

execution instances of programs. 

To predict the time the programs were executed,24 attributes 

were selected and used. The output of the estimation range of 

91.4% to 99.7% was attained. Portable batch system 

scheduling was improved with these results, where the 

requirements of resources were predicted based on the 

developed knowledge base that kept track of the former 

program executions. Negi & Kishore (2005) presented a 

viable idea that included machine learning methods to 

improve process scheduling. This was achieved by allocating 

varying timeshares to distinct processes to decrease the 

overhead cost of context-switching. A special timeshare in the 

form of an integer filed was linked to processes that assisted 

in showing the preferred estimation of processor time to be 

apportioned to reduce their turnaround time. Processes were 

arranged into classes of distinct special timeshares, each 

giving a time interval of 50ticks. 5 sets of standard programs 

were selected, having distinct instances to function with 

distinct special timeshare numbers to ascertain the littlest time 

for each execution. Each example of data incorporated 

process parameters combined into a single data set. Their 

result showed a noticeable reduction in the various processes' 

execution time. However, the problem with this method is that 

whenever a new program arrives, there is an overhead of 

classifying it separately and feeding that data to the Kernel. 

Notwithstanding, the work is a stepping stone in a modern OS.  

Ojha et al. (2015) applied the use of Linux scheduler history 

to estimate the parameters of processes. These include 

execution time and, context switch counts. Performance 

preemption was made better by the scheduler as the 

processor’s overhead time due to preemption and context-

switching was reduced. The parameters used include StrTab, 

RoData, Hash, DynSyn, etc., that produced a Decision Tree 

for classifying instances into 20 class time rates. Their WEKA 

tool simulated the classifier and applied a self-learning 

module based on Reinforcement Learning. The result 

obtained from the classifier served as input to the module. As 

the Decision Tree was busy classifying new processes, the 

module, on the other hand, was examining new classes from 

the background. The scheduler’s decision in allocating 

timepieces was modeled using Markov Chain. Their study 

confirms the suggestion that reducing the context switch 

count can significantly cut down the execution time as 

relevant time slices were assigned to each process in a class. 

This self-learning module empowered the system always to 

make the classification of processes better. 

Siddha et al. (2007) examined several scheduling techniques 

for multicore platforms under distinct load settings and related 

tradeoffs. They asserted that the challenges facing process 

schedulers are identifying and predicting the resource 

requirements of each job and scheduling them in a manner 

that reduces shared resource contentions. In their testing and 

analysis, a dual-package symmetric multi-processor platform 

was considered. Each package was assigned two cores sharing 

a 4MB last-level cache. The experiment result demonstrated 

a uniform distribution of loads among the packages. The core 

speed was increased, resulting from dynamic speed up, and 

optimal performance was achieved. 

Schartl (2016) identified locks, poor locality for sharing 

processor cores, and cache coherent shared memory as OS 

design challenges for multicore architectures. The author 

proposed lock avoidance to mitigate the lack of the system’s 

scalability. The application and OS were split up to avoid 

sharing of cores. Each core was dedicated to every job on a 

system. Also, the author proposed using message passing for 

communication instead of cache-coherent shared memory. 

This message passing was incorporated so that system 

performance could be enhanced. However, designing an OS 

with locks that proffers good structural scalability and load 

balancing remains a challenge because of the technological 

advancement of multicourse. 

Hardware technology is advancing, and in the near future, 

scheduling will not be based on processes competing for 

scarce resources but rather on selecting a suitable resource 

from the abundant system resources. Thus, this work aimed at 

building an intelligent system that predicts the processes’ 

sizes based on resource requirements and selects the most 

appropriate resource(s) using machine learning techniques.  

This research work proposed a multilayer perceptron machine 

learning algorithm that could be deployed in a factored 

operating system environment to evaluate application 

processes and predict their sizes with respect to resource 

requirements. The design of an intelligent architectural 

framework for the proposed system is beneficial in ensuring 

that the abundant processor cores provided by the 

advancement in multicore technology would be adequately 

harvested 

 

METHODOLOGY 

A multilayer perceptron neural networks method is used to 

develop the framework. The aim is to develop an intelligent 

prediction system that can predict process size and resource 

(CPU) requirements in a multicore environment. Figure 1 

depicts the architecture of the proposed framework. In 

building this framework, a multi-agent software development 

idea was used as a distributed system representing processor 

cores and a machine learning model as autonomous intelligent 

agents.
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The parameters of the processes were retrieved, and the 

processes’ sizes concerning the degree of resource 

requirements were predicted using a machine learning 

algorithm. The significant components of this architecture are 

the parallel application processes 1 to n, (n>=1) requesting for 

spatially distributed resources 1 to m (m>=1) represented by 

agents that are allocated using machine learning. Machine 

learning determines the size of each process using its 

parameters. It then collaborates with resource agents to know 

their various capacities. 

Thus, on acquiring the needed information from both process 

jobs and the resource cores, the agent predicts the required or 

suitable resource core for each process job. In simulating this 

framework, an array of positive integer numbers in the 

interval of 1 to 10, with a maximum length of 20, was used to 

represent processes. Two attributes of the array (array length 

and sum of the array elements) were used to describe the 

process resource requirements. 

Machine learning using a backpropagation algorithm is used 

for process size predictions. Figure 2 depicts a detailed back 

propagation model of the proposed system. It shows an 

explicit model of a full-scale network with {p1, p2} as input 

categories. Also, two hidden layers with three and two 

numbers of neurons, respectively, as well as one output 

neuron, as depicted in the neural network architecture of 

figure 2. The input data is normalized using Equation 1.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The Proposed Architecture of the Process-Resource Prediction 
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Figure 2: The Architecture of a Machine Learning Model 
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p = 
(p−min1)(p−min2)

(max1−min1)
 + min2    (1) 

where p is the input parameter of the processes 

On the other hand, the output is scaled within the range of 0 

and 1 using equation 2. 

y = 
p−minp

maxp −minp
    (2) 

Where y is the output value of the network 

Equation 3 is the Tan Activation Function used in the forward 

pass training of the network. 

tanh(p) = 
ep−e−p

ep+ e−p
     (3)  

Equation 4 is the Mean Square Error (MSE) used to compute 

the difference between the estimated and what is estimated in 

training the network to improve prediction accuracy. 

MSE = 
1

𝑛
∑ (�̅�𝑖 − 𝑦𝑖)𝑛

𝑖=1
2    (4)  

Where �̅�𝑖 is the predicted value, and 𝑦𝑖 is the targeted value 

of the machine learning network. 

A partial differential equation to the cost function (square 

error) of equation 5 is used in the backward propagation 

algorithm network to measure the distance between the 

predicted value and the actual value. 

Cost Function (CF) = j(w)  = 
1

2
∑ (�̅�𝑖 − 𝑦𝑖)𝑛

𝑖=1
2  (5) 

Equation 6 is used in updating the weights in the Back 

Propagation Algorithm using Stochastic gradient descent: 

Wl = W - α
1

𝑛

𝜕𝑗(𝑤)

𝜕𝑤𝑙
    (6) 

Where wl is a new weight, w is the weight, α is the learning 

rate, and j is the cost function. 

The backpropagation algorithm model employed as the basis 

for the learning rule is defined as: 

i. Small random values between -1 and 1 were 

initialized for the weights. 

ii. Input parameters of processes are used as the training 

vector input. 

iii. The input signal is propagated forward through the 

network to get the first output and thus compare the 

machine learning result with the target result. 

iv. The learning rate value used for the network training 

is 0.1and a bias value of 1.0. 

v. Errors are computed using Mean Square Error (MSE) 

method by taking the square errors from the output 

neurons and running them back through the weights 

to obtain the hidden layer errors. 

vi. Repeat steps iii to v; by this method, our network of 

three layers will be trained. 

The Unified Modeling Language Sequence Diagram for 

Process-Resource Prediction 

Figure 3 shows the UML sequence diagram of a process-

resource requirements prediction framework. The diagram 

shows the interactions between the proposed framework's 

various agents (objects), that is, the machine learning agent, 

process jobs, and the processor core agents.

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Process-Resource Requirements Prediction 
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The machine learning algorithm was used to extract the 

parameters of the process jobs, which in turn predetermined 

the size of each process in terms of resource requirements. 

Moreover, it then delves into the available Processor core 

resources to get the knowledge of their various capacities. On 

reaching the needed information from both the process jobs 

and the processor cores, the machine learning algorithm 

predicted the most efficient resource cores for the various 

process jobs seeking processor time. The framework was 

simulated using NetBeans IDE 7.2.1, MySQL Query Browser 

Development, and JBOSS 4.2.2.GA Server, and a 

Macromedia Dreamweaver 8.0. In simulating this framework, 

2000 parallel process jobs were used to test the efficiency of 

the proposed system on 5000 processor cores.

 

 

RESULT AND DISCUSSION  

Result  

 
Figure 4: The Training and Prediction Page 

Table 1:  The Un-normalized Training Case 

ANN TRAINING CASE 

S/NO Array Length Array Element Sum Targeted Output 

1 15 85 20 

2 18 115 24 

3 5 16 6 

4 14 63 18 

5 13 77 17 

6 12 68 16 

7 5 24 7 

8 12 57 15 

9 13 65 17 

10 4 22 6 

Table 2: The Normalized Machine Learning Training Case 

NORMALIZED TRAINING CASE 

S/NO Array Length Array Element Sum Targeted Output 

1 4.5 2.55 0.666667 

2 5.4 3.45 0.8 

3 1.5 0.48 0.2 

4 4.2 1.89 0.6 

5 3.9 2.31 0.566667 

6 3.6 2.04 0.533333 

7 1.5 0.72 0.233333 

8 3.6 1.71 0.5 

9 3.9 1.95 0.566667 

10 1.2 0.66 0.2 

 

Table 3:  Artificial Neural Network Training Results 

S/NO Array Length Array Element Sum Targeted Output ANN Result 

1 4.5 2.55 0.666667 0.5317926812 

2 5.4 3.45 0.8 0.5325738518 

3 1.5 0.48 0.2 0.3700710488 

4 4.2 1.89 0.6 0.5304526304 

5 3.9 2.31 0.566667 0.5305195703 

6 3.6 2.04 0.533333 0.5288742535 

7 1.5 0.72 0.233333 0.4022394741 

8 3.6 1.71 0.5 0.5276272429 

9 3.9 1.95 0.566667 0.5297299907 

10 1.2 0.66 0.2 0.3346436349 
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11 2.4 1.11 0.333333 0.5004117889 

12 1.5 0.99 0.233333 0.4307023676 

13 2.1 1.47 0.333333 0.4995388084 

14 0.9 0.6 0.166667 0.2320646768 

15 2.4 1.23 0.366667 0.5036166943 

16 1.8 1.02 0.266667 0.4629974038 

 

Table 4: The Results of the Proposed Process-Resource Requirement Prediction 

S/N Job Id Job Size Performance Function. 

1 I92B3 21 29.0 

2 I92B3 29 36.0 

3 I92B3 26 32.0 

4 I92B3 28 34.0 

5 I92B3 28 34.0 

6 I92B3 16 28.0 

7 I92B3 30 38.0 

8 I92B3 29 36.0 

9 I92B3 19 29.0 

10 I92B3 6 25.0 

11 I92B3 32 40.0 

12 I92B3 30 38.0 

13 I92B3 30 38.0 

14 I92B3 28 34.0 

15 I92B3 31 40.0 

16 I92B3 24 31.0 

17 I92B3 31 40.0 

18 I92B3 25 31.0 

19 I92B3 30 38.0 

20 I92B3 31 40.0 

 

Discussion  

The ANN machine learning shows the inputs (the array length 

and sum of array elements) to the network and the targeted 

output. The ANN operation button is where the input to the 

network is made, as shown in Figure 4. As Figure 4 reflects, 

the add button is used to get the input data into the network 

before it is trained. The training command enables the 

network to be trained, and the prediction test command 

predicts the application process size. The core operation 

button allows input of the core’s parameters which are then 

computed to determine the capacity of the available processor 

cores. The core capacity button displays the available 

processor cores in the system and their respective 

performance function. The result button displays the result of 

the proposed process-resource requirements predictions. The 

training case button gives the training data sets for both the 

normalized and the un-normalized data sets. 

Each normalized value representing the array length and sum 

of array elements was obtained using the expression in 

equations 1 and 2. The activation function of equation 3 is 

then applied to the normalized data during the training process 

to segregate the relevant data from the noisy ones. On getting 

the output, the difference between the target and predicted 

values was computed using the MSE of equation 4, which 

improved the accuracy of the prediction. The cost function of 

equation 5 measured the distance between the predicted and 

the actual values. Hence, the gradient descent of equation 6 

was applied to gain a sense of direction to the model to reduce 

errors and achieve convergence. 

On getting the input data to the network, the raw data was 

normalized before the training and the prediction activities. 

Observing the un-normalized training data in Table 1, the 

array length of 15, the sum of an array element of 85, and 

target output of 20 were normalized to 4.5, 2.55, and 

0.666667, respectively, using equations 1 and 2 as shown in 

Table 2.  

The neural network was successfully trained, and the 

framework was used with data comprising jobs of different 

sizes and processor cores of various capacities. Network 

testing was necessary to enhance the validation accuracy of 

machine learning for the actual prediction of process-resource 

requirements. The network was tested using 200 data items, 

as depicted in Table 3. The input fields contain the normalized 

values of the process parameters of the test data. The target 

output constitutes the thought-over output for each 

observation. The ANN machine learning result column 

comprises the system output for each test run of data. 

Table 4 shows the result of the first 20 process-resource 

requirements prediction. It is observed from the sampled 

result and, by extension, the entire result that process job sizes 

range from a maximum of 32KB to a minimum of 6KB. On 

the other hand, the processor cores range from a maximum of 

40GHz to a minimum of 25GHz in capacity. The result of the 

simulated framework showed that higher processor cores 

were selected and allocated to process jobs with higher 

resource requirements. It is seen that a process job size of 

32KB was allocated to the largest processor core of 40GHz in 

capacity, also 31KB to 40GHz, 30KB to 38GHz down to the 

least 6KB to 25GHz. Process jobs of 32KB and 31KB were 

allocated the same 40GHz because there were still 40GHz 

processor cores; after that, the higher process jobs of 32KB 

were exhausted. This was continued until the entire process 

jobs were allocated in the most suitable way. 

 

CONCLUSION 

Thus, the framework is efficient and accurate in 

predetermining the process job resource requirement and 

predicting the most optimized processor core in a multicore 
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factored OS environment. This framework is more adaptable 

because of the advancement in multicore technology as 

opposed to the work of Helmy et al. (2015), which predicted 

the CPU burst but was limited to the traditional scheduling 

approach and blind to the growth in multicore technology. 

This intelligent framework is scalable, adaptable, and 

positioned to enhance the overall system performance 

throughput. 

The framework is recommended for use because of its ability 

to predict the process-resource requirements in an optimized 

fashion. Moreover, with the current growth in multicore 

technology and the user demands on system resources, the 

framework could adequately adapt and utilize the abundant 

processor cores and improve the overall system performance. 

In future work, the efficiency of the proposed framework will 

be tested on scheduling in a factored OS, where process jobs 

execution on processor cores is timed, to validate the 

improvement in system throughput since this framework 

limited to demonstrate.  
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