
A FRAMEWORK FOR PROCESS-RESOURCE… Mikailu et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 6 No. 6, December, 2022, pp 289 - 295 289

8

A FRAMEWORK FOR PROCESS-RESOURCE REQUIREMENTS PREDICTION IN A FACTORED

OPERATING SYSTEMS USING MACHINE LEARNING

*1Habila Mikailu, 2Agaji Iorshase, 3Blamah Nachamada and 4Ishaya Gambo

1Department of Computer Science, Nigeria Army University Biu, Nigeria

2Department of Computer Science, Federal University of Agriculture Makurdi, Nigeria
3Department of Computer Science, University of Jos, Jos, Nigeria

4Department of Computer Science and Engineering, Obafemi Awolowo University, Ile-Ife, Nigeria

*Corresponding authors’ email: mikailu.habila@naub.edu.ng

ABSTRACT

The evolution of multicore technology has come with new challenges to process scheduling. An intelligent

process resource requirement prediction framework in a factored operating system (FOS) was developed using

machine learning. To simulate this system, an array of positive integer numbers in the interval of 1 to 10, with

a maximum length of 20, was used to represent process. The properties of this array (array length and sum of

the array elements) were used as the parameters of the application processes. These served as input into the

machine learning network to predict the process’ size and hence, the resource requirements for each process.

The framework was simulated using Java 2EE. Experimental results of the framework showed that prediction

of processes’ sizes with enhanced resource requirement allocation, and hence, required faster and efficient

scheduling of processes to multiple resource cores, with an increased system throughout.

Keywords: Machine Learning, Multicore, Resource Prediction, Factored Operating System, process

scheduling

INTRODUCTION

Job processes and threads in an operating system (OS) gain

access to system resources by scheduling algorithms. The

requirement to execute multiple processes at a time with the

present-day systems and concurrent execution is the

propelling force behind scheduling algorithms. Distinct

scheduling methods have emerged, among which several have

been used to overcome many problems in scheduling, such as

which process to give processor time. Among these methods

applied in tackling scheduling problems are the branch and

bound, critical path methods, priority rules, dynamic

programming, shortage job first, etc., to determine which

process gets the processor time (Silberschatz et al., 2013).

According to Koya (2017), the traditional scheduling

algorithms, in theory, are First-Come-First-Serve (FCFS)

Scheduling, Round Robin (RR) Scheduling, Priority

Scheduling, Shortest Job First (SJF) Scheduling, Shortest

Remaining Time First (SRTF) Scheduling, Multilevel Queue

Scheduling (MQS) and multilevel Feedback Queue (MFQ)

Scheduling. These scheduling algorithms are either

preemptive or non-preemptive.

According to Amur et al. (2008), the time expended by a

process executing on a processor is quantified as burst length.

Estimating the next CPU burst of a process is complex and

requires much effort and calculations. The lengths of the next

CPU burst can mathematically be predicted using a traditional

method known as “Exponential Averaging,” which uses the

process history to estimate the next processor time

(Silberschatz et al., 2013).

In Grids Computing, where multi-level platforms from

multiple locations provide a wide range of services to reach a

common goal, scheduling tasks is considered a critical

component of a Grids Computing infrastructure. On this

platform, administrative domains are searched to allocate a

task to a machine or, on the contrary, schedule tasks to several

resources at one or more sites (Shah et al., 2010).

Scheduling in the grid consists of three main phases:

discovering available resources phase, apportioning and

attributing tasks to executable resources phase, and finally,

the tasks executing phase. Dedicated machines are usually

used to apportion tasks to executable resources in Grids

Computing due to their addiction to the duration of processor

time. Consequently, a dedicated machine must be able to

estimate the succeeding processor time duration in Grids

Computing scheduling techniques (David, 1998).

Helmy et al. (2015) proposed a Machine Learning (ML) based

approach to estimate the length of the CPU bursts for

processes. The proposed approach aimed to select the most

significant attributes of the process using feature selection

techniques and then predict the CPU burst for the process in

the grid. ML techniques such as Support Vector Machine

(SVM) and K-Nearest Neighbors (K-NN), Artificial Neural

Networks (ANN), and Decision Trees (DT) were used to test

and evaluate the proposed approach using a grid workload

dataset named “GWA-T-4 AuverGrid”. The experimental

results show a strong linear relationship between the process

attributes and the burst CPU time. Moreover, K-NN performs

better in nearly all approaches regarding CC and RAE.

Furthermore, applying attribute selection techniques

improved the performance in terms of space, time, and

estimation.

As the scalability of the processor core slows, ascribable to

Moore’s law which speeds up research in modern computing

architecture, a demand exists to consider new OS models.

Wentzlaff et al. (2011) described FOS as an OS for 1000

cores, executing each task on a separate core. Their idea was

concerning the future abundant processor cores, such that

devoting a core to a single process will maximize the benefits

of multicore technology. According to the authors, the

scheduling method may take a different approach from the

current traditional method. They affirmed that scheduling in

FOS becomes a space-sharing approach as opposed to the

time multiplexing of the conventional OS.

According to Wang et al. (2019), space sharing is when

multiple tasks run on physical resources simultaneously. Still,

the resources are physically divided into multiple partitions

FUDMA Journal of Sciences (FJS)

ISSN online: 2616-1370

ISSN print: 2645 - 2944

Vol. 6 No. 6, December, 2022, pp 289 - 295

DOI: https://doi.org/10.33003/fjs-2022-0606-1094

https://doi.org/10.33003/fjs-2022-0606-

A FRAMEWORK FOR PROCESS-RESOURCE… Mikailu et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 6 No. 6, December, 2022, pp 289 - 295 290

that the tasks execute concurrently, as opposed to time-

sharing, where processes run simultaneously. Still, only one

process runs on the shared resources at a time. Laplante &

Milojicic (2016) also envision that by 2030 OS will be created

using a new technology paradigm that would be nearly

unrecognizable today. Formulating better scheduling

techniques is a central and most profound knowledge of

process execution behavior that is very useful. Negi &

Kishore (2004) studied the approaches to the process

characterization problem. They also proposed a novel method

to characterize and categorize process execution behaviors

using machine learning techniques that learn from previous

execution instances of programs.

To predict the time the programs were executed,24 attributes

were selected and used. The output of the estimation range of

91.4% to 99.7% was attained. Portable batch system

scheduling was improved with these results, where the

requirements of resources were predicted based on the

developed knowledge base that kept track of the former

program executions. Negi & Kishore (2005) presented a

viable idea that included machine learning methods to

improve process scheduling. This was achieved by allocating

varying timeshares to distinct processes to decrease the

overhead cost of context-switching. A special timeshare in the

form of an integer filed was linked to processes that assisted

in showing the preferred estimation of processor time to be

apportioned to reduce their turnaround time. Processes were

arranged into classes of distinct special timeshares, each

giving a time interval of 50ticks. 5 sets of standard programs

were selected, having distinct instances to function with

distinct special timeshare numbers to ascertain the littlest time

for each execution. Each example of data incorporated

process parameters combined into a single data set. Their

result showed a noticeable reduction in the various processes'

execution time. However, the problem with this method is that

whenever a new program arrives, there is an overhead of

classifying it separately and feeding that data to the Kernel.

Notwithstanding, the work is a stepping stone in a modern OS.

Ojha et al. (2015) applied the use of Linux scheduler history

to estimate the parameters of processes. These include

execution time and, context switch counts. Performance

preemption was made better by the scheduler as the

processor’s overhead time due to preemption and context-

switching was reduced. The parameters used include StrTab,

RoData, Hash, DynSyn, etc., that produced a Decision Tree

for classifying instances into 20 class time rates. Their WEKA

tool simulated the classifier and applied a self-learning

module based on Reinforcement Learning. The result

obtained from the classifier served as input to the module. As

the Decision Tree was busy classifying new processes, the

module, on the other hand, was examining new classes from

the background. The scheduler’s decision in allocating

timepieces was modeled using Markov Chain. Their study

confirms the suggestion that reducing the context switch

count can significantly cut down the execution time as

relevant time slices were assigned to each process in a class.

This self-learning module empowered the system always to

make the classification of processes better.

Siddha et al. (2007) examined several scheduling techniques

for multicore platforms under distinct load settings and related

tradeoffs. They asserted that the challenges facing process

schedulers are identifying and predicting the resource

requirements of each job and scheduling them in a manner

that reduces shared resource contentions. In their testing and

analysis, a dual-package symmetric multi-processor platform

was considered. Each package was assigned two cores sharing

a 4MB last-level cache. The experiment result demonstrated

a uniform distribution of loads among the packages. The core

speed was increased, resulting from dynamic speed up, and

optimal performance was achieved.

Schartl (2016) identified locks, poor locality for sharing

processor cores, and cache coherent shared memory as OS

design challenges for multicore architectures. The author

proposed lock avoidance to mitigate the lack of the system’s

scalability. The application and OS were split up to avoid

sharing of cores. Each core was dedicated to every job on a

system. Also, the author proposed using message passing for

communication instead of cache-coherent shared memory.

This message passing was incorporated so that system

performance could be enhanced. However, designing an OS

with locks that proffers good structural scalability and load

balancing remains a challenge because of the technological

advancement of multicourse.

Hardware technology is advancing, and in the near future,

scheduling will not be based on processes competing for

scarce resources but rather on selecting a suitable resource

from the abundant system resources. Thus, this work aimed at

building an intelligent system that predicts the processes’

sizes based on resource requirements and selects the most

appropriate resource(s) using machine learning techniques.

This research work proposed a multilayer perceptron machine

learning algorithm that could be deployed in a factored

operating system environment to evaluate application

processes and predict their sizes with respect to resource

requirements. The design of an intelligent architectural

framework for the proposed system is beneficial in ensuring

that the abundant processor cores provided by the

advancement in multicore technology would be adequately

harvested

METHODOLOGY

A multilayer perceptron neural networks method is used to

develop the framework. The aim is to develop an intelligent

prediction system that can predict process size and resource

(CPU) requirements in a multicore environment. Figure 1

depicts the architecture of the proposed framework. In

building this framework, a multi-agent software development

idea was used as a distributed system representing processor

cores and a machine learning model as autonomous intelligent

agents.

A FRAMEWORK FOR PROCESS-RESOURCE… Mikailu et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 6 No. 6, December, 2022, pp 289 - 295 291

The parameters of the processes were retrieved, and the

processes’ sizes concerning the degree of resource

requirements were predicted using a machine learning

algorithm. The significant components of this architecture are

the parallel application processes 1 to n, (n>=1) requesting for

spatially distributed resources 1 to m (m>=1) represented by

agents that are allocated using machine learning. Machine

learning determines the size of each process using its

parameters. It then collaborates with resource agents to know

their various capacities.

Thus, on acquiring the needed information from both process

jobs and the resource cores, the agent predicts the required or

suitable resource core for each process job. In simulating this

framework, an array of positive integer numbers in the

interval of 1 to 10, with a maximum length of 20, was used to

represent processes. Two attributes of the array (array length

and sum of the array elements) were used to describe the

process resource requirements.

Machine learning using a backpropagation algorithm is used

for process size predictions. Figure 2 depicts a detailed back

propagation model of the proposed system. It shows an

explicit model of a full-scale network with {p1, p2} as input

categories. Also, two hidden layers with three and two

numbers of neurons, respectively, as well as one output

neuron, as depicted in the neural network architecture of

figure 2. The input data is normalized using Equation 1.

Figure 1: The Proposed Architecture of the Process-Resource Prediction

Machine

Learning

Processor Cores

 Core n

Agent

 Core 3

Agent

 Core 2

Agent

Core 1

Agent

Collaborative

interaction

Parallel Processes

Process1

info.

Process2

info.

Process3

info.

Process n

info.

Process’
parameters

Resource
Selection

Repository

Input
Parameters

Output layer Input layer Hidden layer 1 Hidden layer 2

P1

P2

w21

w11

y

w23

w21

w22

w13

w12

w11

a

a

a

b1

w12

w31

w32

w11

w21

w22

a

a

b2 b3

Figure 2: The Architecture of a Machine Learning Model

A FRAMEWORK FOR PROCESS-RESOURCE… Mikailu et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 6 No. 6, December, 2022, pp 289 - 295 292

p =
(p−min1)(p−min2)

(max1−min1)
 + min2 (1)

where p is the input parameter of the processes

On the other hand, the output is scaled within the range of 0

and 1 using equation 2.

y =
p−minp

maxp −minp
 (2)

Where y is the output value of the network

Equation 3 is the Tan Activation Function used in the forward

pass training of the network.

tanh(p) =
ep−e−p

ep+ e−p
 (3)

Equation 4 is the Mean Square Error (MSE) used to compute

the difference between the estimated and what is estimated in

training the network to improve prediction accuracy.

MSE =
1

𝑛
∑ (�̅�𝑖 − 𝑦𝑖)𝑛

𝑖=1
2 (4)

Where �̅�𝑖 is the predicted value, and 𝑦𝑖 is the targeted value

of the machine learning network.

A partial differential equation to the cost function (square

error) of equation 5 is used in the backward propagation

algorithm network to measure the distance between the

predicted value and the actual value.

Cost Function (CF) = j(w) =
1

2
∑ (�̅�𝑖 − 𝑦𝑖)𝑛

𝑖=1
2 (5)

Equation 6 is used in updating the weights in the Back

Propagation Algorithm using Stochastic gradient descent:

Wl = W - α
1

𝑛

𝜕𝑗(𝑤)

𝜕𝑤𝑙
 (6)

Where wl is a new weight, w is the weight, α is the learning

rate, and j is the cost function.

The backpropagation algorithm model employed as the basis

for the learning rule is defined as:

i. Small random values between -1 and 1 were

initialized for the weights.

ii. Input parameters of processes are used as the training

vector input.

iii. The input signal is propagated forward through the

network to get the first output and thus compare the

machine learning result with the target result.

iv. The learning rate value used for the network training

is 0.1and a bias value of 1.0.

v. Errors are computed using Mean Square Error (MSE)

method by taking the square errors from the output

neurons and running them back through the weights

to obtain the hidden layer errors.

vi. Repeat steps iii to v; by this method, our network of

three layers will be trained.

The Unified Modeling Language Sequence Diagram for

Process-Resource Prediction

Figure 3 shows the UML sequence diagram of a process-

resource requirements prediction framework. The diagram

shows the interactions between the proposed framework's

various agents (objects), that is, the machine learning agent,

process jobs, and the processor core agents.

Figure 3: Process-Resource Requirements Prediction

Assigned Processor Cores

Predicted Resource Cores

Predict Process-Resource Requirements

Processor Core Capacities

Get processor Capacities

Process Sizes

Determine Size

Process Parameters

Get Process Parameters

Machine

Learning

Processes Processor

Cores

A FRAMEWORK FOR PROCESS-RESOURCE… Mikailu et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 6 No. 6, December, 2022, pp 289 - 295 293

The machine learning algorithm was used to extract the

parameters of the process jobs, which in turn predetermined

the size of each process in terms of resource requirements.

Moreover, it then delves into the available Processor core

resources to get the knowledge of their various capacities. On

reaching the needed information from both the process jobs

and the processor cores, the machine learning algorithm

predicted the most efficient resource cores for the various

process jobs seeking processor time. The framework was

simulated using NetBeans IDE 7.2.1, MySQL Query Browser

Development, and JBOSS 4.2.2.GA Server, and a

Macromedia Dreamweaver 8.0. In simulating this framework,

2000 parallel process jobs were used to test the efficiency of

the proposed system on 5000 processor cores.

RESULT AND DISCUSSION

Result

Figure 4: The Training and Prediction Page

Table 1: The Un-normalized Training Case

ANN TRAINING CASE

S/NO Array Length Array Element Sum Targeted Output

1 15 85 20

2 18 115 24

3 5 16 6

4 14 63 18

5 13 77 17

6 12 68 16

7 5 24 7

8 12 57 15

9 13 65 17

10 4 22 6

Table 2: The Normalized Machine Learning Training Case

NORMALIZED TRAINING CASE

S/NO Array Length Array Element Sum Targeted Output

1 4.5 2.55 0.666667

2 5.4 3.45 0.8

3 1.5 0.48 0.2

4 4.2 1.89 0.6

5 3.9 2.31 0.566667

6 3.6 2.04 0.533333

7 1.5 0.72 0.233333

8 3.6 1.71 0.5

9 3.9 1.95 0.566667

10 1.2 0.66 0.2

Table 3: Artificial Neural Network Training Results

S/NO Array Length Array Element Sum Targeted Output ANN Result

1 4.5 2.55 0.666667 0.5317926812

2 5.4 3.45 0.8 0.5325738518

3 1.5 0.48 0.2 0.3700710488

4 4.2 1.89 0.6 0.5304526304

5 3.9 2.31 0.566667 0.5305195703

6 3.6 2.04 0.533333 0.5288742535

7 1.5 0.72 0.233333 0.4022394741

8 3.6 1.71 0.5 0.5276272429

9 3.9 1.95 0.566667 0.5297299907

10 1.2 0.66 0.2 0.3346436349

A FRAMEWORK FOR PROCESS-RESOURCE… Mikailu et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 6 No. 6, December, 2022, pp 289 - 295 294

11 2.4 1.11 0.333333 0.5004117889

12 1.5 0.99 0.233333 0.4307023676

13 2.1 1.47 0.333333 0.4995388084

14 0.9 0.6 0.166667 0.2320646768

15 2.4 1.23 0.366667 0.5036166943

16 1.8 1.02 0.266667 0.4629974038

Table 4: The Results of the Proposed Process-Resource Requirement Prediction

S/N Job Id Job Size Performance Function.

1 I92B3 21 29.0

2 I92B3 29 36.0

3 I92B3 26 32.0

4 I92B3 28 34.0

5 I92B3 28 34.0

6 I92B3 16 28.0

7 I92B3 30 38.0

8 I92B3 29 36.0

9 I92B3 19 29.0

10 I92B3 6 25.0

11 I92B3 32 40.0

12 I92B3 30 38.0

13 I92B3 30 38.0

14 I92B3 28 34.0

15 I92B3 31 40.0

16 I92B3 24 31.0

17 I92B3 31 40.0

18 I92B3 25 31.0

19 I92B3 30 38.0

20 I92B3 31 40.0

Discussion

The ANN machine learning shows the inputs (the array length

and sum of array elements) to the network and the targeted

output. The ANN operation button is where the input to the

network is made, as shown in Figure 4. As Figure 4 reflects,

the add button is used to get the input data into the network

before it is trained. The training command enables the

network to be trained, and the prediction test command

predicts the application process size. The core operation

button allows input of the core’s parameters which are then

computed to determine the capacity of the available processor

cores. The core capacity button displays the available

processor cores in the system and their respective

performance function. The result button displays the result of

the proposed process-resource requirements predictions. The

training case button gives the training data sets for both the

normalized and the un-normalized data sets.

Each normalized value representing the array length and sum

of array elements was obtained using the expression in

equations 1 and 2. The activation function of equation 3 is

then applied to the normalized data during the training process

to segregate the relevant data from the noisy ones. On getting

the output, the difference between the target and predicted

values was computed using the MSE of equation 4, which

improved the accuracy of the prediction. The cost function of

equation 5 measured the distance between the predicted and

the actual values. Hence, the gradient descent of equation 6

was applied to gain a sense of direction to the model to reduce

errors and achieve convergence.

On getting the input data to the network, the raw data was

normalized before the training and the prediction activities.

Observing the un-normalized training data in Table 1, the

array length of 15, the sum of an array element of 85, and

target output of 20 were normalized to 4.5, 2.55, and

0.666667, respectively, using equations 1 and 2 as shown in

Table 2.

The neural network was successfully trained, and the

framework was used with data comprising jobs of different

sizes and processor cores of various capacities. Network

testing was necessary to enhance the validation accuracy of

machine learning for the actual prediction of process-resource

requirements. The network was tested using 200 data items,

as depicted in Table 3. The input fields contain the normalized

values of the process parameters of the test data. The target

output constitutes the thought-over output for each

observation. The ANN machine learning result column

comprises the system output for each test run of data.

Table 4 shows the result of the first 20 process-resource

requirements prediction. It is observed from the sampled

result and, by extension, the entire result that process job sizes

range from a maximum of 32KB to a minimum of 6KB. On

the other hand, the processor cores range from a maximum of

40GHz to a minimum of 25GHz in capacity. The result of the

simulated framework showed that higher processor cores

were selected and allocated to process jobs with higher

resource requirements. It is seen that a process job size of

32KB was allocated to the largest processor core of 40GHz in

capacity, also 31KB to 40GHz, 30KB to 38GHz down to the

least 6KB to 25GHz. Process jobs of 32KB and 31KB were

allocated the same 40GHz because there were still 40GHz

processor cores; after that, the higher process jobs of 32KB

were exhausted. This was continued until the entire process

jobs were allocated in the most suitable way.

CONCLUSION

Thus, the framework is efficient and accurate in

predetermining the process job resource requirement and

predicting the most optimized processor core in a multicore

A FRAMEWORK FOR PROCESS-RESOURCE… Mikailu et al., FJS

FUDMA Journal of Sciences (FJS) Vol. 6 No. 6, December, 2022, pp 289 - 295 295

 ©2022 This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0
International license viewed via https://creativecommons.org/licenses/by/4.0/ which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is cited appropriately.

factored OS environment. This framework is more adaptable

because of the advancement in multicore technology as

opposed to the work of Helmy et al. (2015), which predicted

the CPU burst but was limited to the traditional scheduling

approach and blind to the growth in multicore technology.

This intelligent framework is scalable, adaptable, and

positioned to enhance the overall system performance

throughput.

The framework is recommended for use because of its ability

to predict the process-resource requirements in an optimized

fashion. Moreover, with the current growth in multicore

technology and the user demands on system resources, the

framework could adequately adapt and utilize the abundant

processor cores and improve the overall system performance.

In future work, the efficiency of the proposed framework will

be tested on scheduling in a factored OS, where process jobs

execution on processor cores is timed, to validate the

improvement in system throughput since this framework

limited to demonstrate.

REFERENCES

Amur, H. R., Gautham, R. S., Dipankar, S. & Srivatsa, V.

(2008). Plimsoll: a DVS Algorithm Hierarchy.

https://www.academia.edu/7901429/Plimsoll_a_DVS_Algor

ithm_Hierarchy.

Courtial, F. (2017). Deep Neural Networks from Scratch.

Retrieved on 7th July, 2019, from https://matrices.io/deep-

neural-network-from-scratch/

David, F. (1989). Allocating modules to processors in a

distributed system.IEEE Transactions, 15(11): 1427-1436.

Helmy, T., Al-Azani, S. & Bin-Obaidellah, O. (2015). A

Machine Learning-Based Approach to Estimate the CPU-

Burst Time for Processes in the Computational Grids.In Third

International Conference on Artificial Intelligence,

Modelling and Simulation. Retrieved on 19th July, 2019,

fromhttp://uksim.info/aims2015/CD/data/8675a003.pdf

Koya, B. K. (2017). An Interactive Tutoring System to Teach

CPU Scheduling Concepts in an Operating System Course.

MSc. Thesis. Computer Science and Engineering. Wright

State University, India). Retrieved from

https://corescholar.libraries.wright.edu/cgi/iewcontent.cgi?ar

ticle=2885&context=etd_all.

Laplante, P. & Milojicic, D. (2016). Rethinking Operating

Systems for Rebooted Computing.IEEE International

Conference on Rebooting Computing (ICRC). Retrieved from

https://ieeexplore.ieee.org/abstract/document/7738695/autho

rs

Negi, A. & Kishore, K. P. (2005). Applying machine learning

techniques to improve Linux process scheduling. In TENCON

IEEE, Region 10, pages 16. Retrieved on 19th May, 2019,

from http://alumni.cs.ucr.edu/~kishore/papers/tencon.pdf

Negi, A. & Kishore, K. P. (2004). Characterizing Process

Execution Behaviour Using Machine Learning Techniques.

In DpROMWorkShop Proceedings, HiPC International

Conference. Retrieved on 12th July, 2019, from

http://alumni.cs.ucr.edu/~kishore/papers/hipc.pdf

Ojha, P., Siddhartha, R. T., Vani, M. & Mohit, P. T. (2015).

Learning Scheduler Parameters for Adaptive preemption.

Journal of Computer Science & Information Technology.

Retrieved on 18th, February, 2019, from DOI:

10.5121/csit.2015.51513

Schartl, A. (2016). Design Challenges of Scalable Operating

Systems for Many-Core

Architectures. Retrieved on 7th April, 2018, from

http://www4.cs.fau.de/Lehre/WS16/PS_KVBK/slides/slides-

schaertl.pdf

Shah, M., Nasir, S., Mahmood, A. K. & Oxley, A. (2010).

Analysis and evaluation of grid scheduling algorithms using

real workload traces. In Proceedings of the International

Conference on Management of Emergent Digital EcoSystems,

pp. 234-239.ACM.

Siddha, S., Pallipadi, V. & Mallick, A. (2007). Process

Scheduling Challenges in the Era of Multi-core Processors.

Intel Technology Journal, 11(4): 360-369.Retrieved on 14th

October, 2018, from DOI: 10.1535/itj.1104.09

Silberschatz, A., Galvin, P. B. & Gagne, G. (2013). Operating

System Concepts. John Wiley and sons, Inc. USA.

Wang, Y., Li, L., Wu, Y., Yu, J., Yu, Z. & Qian, X. (2019).

TPShare: A Time-Space Sharing Scheduling Abstraction for

Shared Cloud via Vertical Labels. ISCA ’19: ACM

Symposium on Computer Architecture, Phoenix, AZ.ACM,

New York, NY, USA. Retrieved on 10th September,

2019, from https://doi.org/10.1145/1122445.1122456.

Wentzlaff, D., Gruenwald, C., Beckmann, N., Modzelewski,

K., Belay, A., Kasture, H., Youseff, L., Miller, J. & Agarwal,

A. (2011). Fleets: Scalable services in a factored operation

system. Computer Science and Artificial Intelligence

Laboratory Technical Report, Massachusetts Institute of

Technology, Cambridge, Ma 01239 USA.

https://creativecommons.org/licenses/by/4.0/

