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ABSTRACT 

This paper explores the dynamical equations of the restricted three-body problem with variable masses of the 

primaries which are enclosed by a disk, when the masses of the primary and the disk vary with time in 

accordance with the unified Mestschersky law and motion of the primaries is determined by the Gylden-

Mestschersky equation. It is seen that the equations of motion differ from those of the restricted three-body 

problem with variable masses due to the disk mass.  
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INTRODUCTION 

The restricted three-body problem (R3BP) describes the 

motion of an infinitesimal mass moving under the 

gravitational effects of the two finite masses, called primaries, 

which move in circular orbits around their center of mass on 

account of their mutual attraction and the infinitesimal mass 

not influencing the motion of the primaries. For no general 

solution in the CR3BP is available, particular solutions are 

sought to obtain insight into the problem, these particular 

solutions referred to as the equilibrium points (EP) are five for 

the classical R3BP; two triangular and three collinear. Euler 

(1767) determined a set of three collinear EPs and Lagrange 

(1772) found the triangular EPs. The R3BP has been treated 

from many angles by various authors and researchers, some 

of who have considered the effect of some parameters relating 

to the shape and nature of orbits of the primaries and of the 

third body. Others have included perturbing forces of 

Coriolis, centrifugal, radiation pressure and the effect of the 

gravitational potential from the disk; while some have looked 

at the formulation whereby the motion of the third body is 

confined inside one of the primaries. The investigations of the 

R3BP with mass variations of one, two or all the masses and 

studies of the periodic orbits have also received attention.  

The classical R3BP assumes that the masses of celestial 

bodies are constant. However, the phenomenon of isotropic 

radiation or absorption in stars led scientists to formulate the 

restricted problem of three bodies with variable mass. During 

evolution, the masses of celestial bodies change, especially in 

a double star system were masses change rather intensively. 

As an example, we could mention the motion of rockets, black 

holes’ formation, motion of a satellite around a radiating star 

surrounded by a cloud and varying its mass due to particles of 

the cloud, and comets loosing part or all of their masses as a 

result of roaming around the Sun (or other stars) due to their 

interaction with the solar wind which blows off particles from 

their surfaces. The problem of the motion of astronomical 

objects with variable mass has many interesting applications 

in stellar, galactic, and planetary dynamics.  

The problem of two bodies with variable masses came into 

science practically following the work of Gylden (1884), who 

for the relative motion of one mass point 2m about the other 

mass point 1m  under the action of mutual gravitational force 

represented the sum of the masses of these points as varying 

with time by a certain law  1 2m m t  . Later, Dufour 

(1886) examined the astronomical phenomena of variable 

mass relating the secular variation of lunar acceleration with 

the increase of the Earth’s mass due to the impact of 

meteorites. Soon afterwards, Mestschersky (1893, 1902) 

showed that the Gylden problem is a particular case of the 

problem of two bodies with variable masses under the 

condition that the laws of variation of the masses vary 

isotropically. This problem is referred to as the Gylden-

Mestschersky problem (GMP).    

The first investigation of the existence of the EPs for variable 

masses in the absence of reactive forces was performed by 

Orlov (1939), in which the plane problem of three bodies with 

finite variable masses was considered, and the existence of 

five analogous particular solutions was established. Sersic 

(1970, 1973) demonstrated the existence of particular 

solutions in the R3BP, in which the motion of the primary, 

variable-mass bodies occur along a straight line passing 

through the center of mass of the system.     Gelf’gat (1973) 

examined the R3BP of variable mass in which the primary 

bodies move within the framework of the GMP and assumed 

that the isotropic mass variation of the masses of the primaries 

occurs in accordance with unified Mestschersky law (UML). 

He established the existence of three collinear and two 

triangular EPs analogous to the classical type

 1,2...5iL i  . The equations of motion of the CR3BP 

with variable mass under the assumption that the mass of the 

infinitesimal body vary with respect to time was established 

by Shrivastava and Ishwar (1983), while Singh and Ishwar 

(1984, 1985) investigated the effect of small perturbation in 

the Coriolis and centrifugal forces on the location and stability 

of EPs in the R3BP with variable mass under the assumption 

that the third infinitesimal mass is variable and the primaries 

are spherical with constant masses.  

Dyakov and Reznikov (1986) studied the motion in the 

vicinity of triangular EPs when the mass ratio of the 

components is a variable. They specified by investigating 

Trojan orbits in a system having components with variable 

mass ratio within the framework of the CR3BP, and found 

that when the mass variation over the period of the libration 

is slight, an increase in the relative mass  of the smaller 

component above a certain limit (lower than the critical value 
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0.0385   and depends only on the initial deviation 

from the EPs) result in the cutoff of librations. They 

investigated the stability and established numerically the 

regions of relative stability of the motion around the points for 

different mass ratios. Further they used the results obtained to 

evaluate the hypothesis that the Trojans originated as former 

satellites of Jupiter. 

The coplanar EPs 6L and 7L  for variable mass were first 

found by Bekov (1988) after he worked on the same problem 

of Gelf’gat (1973). These EPs are located outside the plane of 

revolution of the primary bodies, with isotropic mass 

variation of the masses of the primaries. Later, on the 

particular solution of same formulation as Gelf’gat (1973) 

was investigated by Luk’yanov (1989). He found four new 

coplanar solutions denoted by 8L , 9L , 10L and 11L , and 

further sought for the possibility of the existence of infinitely 

remote solutions L . The stability of the EPs in the R3BP 

with variable masses of the primaries with respect to time 

according to the UML, with the consideration that the motion 

of the variable mass primary body is within the framework of 

the GMP, was studied by Luk’yanov (1990). He showed that 

the EPs (collinear, triangular and coplanar) for any parameter 

are stable with respect to the coordinate introduced by 

Mestschersky (1952). The particular solutions in the restricted 

collinear three-body problem with variable masses were 

considered by Bekov (1991). In this case, it was also assumed 

that the motion of the two primary bodies is in accordance 

with the GMP and the time variation of the masses of the 

primaries is determined by the UML. He found the collinear 

solutions 
1,2,3L  and the spatial solution 0L (a Lagrangian 

ring) for different time dependency of the masses and 

established the domain of existence of these solutions. 

  The EPs and Hill surfaces in the same formulation as 

Gelf’gat (1973) and Bekov (1988) were studied by Bekov 

(1992) using a Gelf’gat transformation in the autonomization 

of the equations of motion with variable coefficients, to a 

system of equations with constant coefficients. He 

investigated the arising and disappearance of collinear 1,2,3L

, triangular 4,5L , coplanar 6,7L , ring 0L and infinitely 

distant L solutions and the Hill surfaces. The possibility of 

applying the results obtained to non-stationary double stellar 

systems was discussed. Bekov (1993) studied the periodic 

solutions of the GMP. An important role in the dynamic 

evolution of real gravitating systems is their non-stationarity, 

connected with mass variation of the system and the 

additional influence of the variable light pressure from the 

system’s components. Singh and Leke (2010, 

2012,2013a,b,c,d) investigated the motion and stability of 

equilibrium points of the restricted problem under different 

characterizations when the primaries vary their masses 

isotropically with time in accordance with the UML with the 

inclusion that their motion is described by the GMP.  

  The effect of the isotropic variation of the mass of the star in 

a planetary system and the possible ejection of a planet from 

the system was studied by Veras et al. (2011). Letelier and Da 

Silva (2011) studied the particular solutions of the R3BP with 

variable masses. In the study, particular solutions to the R3BP 

where the bodies are allowed to either lose or gain mass to or 

from a static atmosphere, were found. In the case that all the 

masses are proportional to the same function of time, they 

found analogous solution to the five stationary solutions of the 

usual R3BP of constant masses: the three collinear and the 

two triangular solutions, however, the relative distance of the 

bodies change with time at the same rate. Further, they 

observed that under some restrictions, there are also coplanar, 

infinitely remote and ring solutions.The triangular EPs in 

photogravitational R3BP with variable mass, in which both 

the attracting bodies are radiating as well and the infinitesimal 

body vary its mass with time according to Jeans’ law, was 

studied by Zhang et al. (2012).They applied the space-time 

transformation of Mestschersky (1949) and obtained the 

differential equations of motion of the problem. They 

obtained the triangular equilibrium points and found that the 

triangular points are unstable in the linear sense when the 

problem with constant mass evolves into the problem with 

decreasing mass. Tyokyaa and Atsue (2020) examined the 

positions and  linear stability of libration points in the CR3BP 

under radiation and oblatenes of the  more massive primary 

with constant masses. Singh and Leke (2014)  discussed the 

periodic orbits around triangular points of the restricted three-

body problem with variable masses. Ziyad (2018) examined 

the effect of Poynting-Robertson drag on the circular R3BP 

with variable masses while Ansari et. al (2019) investigated 

the effect of variation of charge in the circular R3BP with 

variable masses. 

Some studies of our planetary systems have revealed some 

disks of dust particles, which are regarded as young analogues 

of the Kuiper Belt in our Solar system (Greaves et al., 1998). 

These disks play important roles in the origin of planets’ 

orbital elements. Since the belt of planetesimals often exists 

within a planetary system and provides the possible 

mechanism for orbital circularization, it is important to 

understand the solutions of dynamical systems which show 

planet-belt interactions. In stellar systems, this phenomenon 

is also valid. Out of an observed 69 A3-F8 main sequence 

binary star systems, nearly 60 percent showed dust disks 

surrounding binary stars. Circumbinary disk that may indicate 

processes of planet formation have been found around several 

stars, and are in fact common around binaries with separations 

less than 3 AU (Trilling et al.2007). One notable example is 

in the HD 98800 system, which comprises two pairs of binary 

stars separated by around 34 AU (Fig 1). The binary 

subsystem HD 98800 B, which consists of two stars of 0.70 

and 0.58 solar masses in a highly eccentric orbit with 

semimajor axis 0.983 AU, is surrounded by a complex dust 

disc that is being warped by the gravitational effects of the 

mutually-inclined and eccentric stellar orbits (Akeson et al. 

2007; Verrier and Evans2008). The other binary subsystem, 

HD 98800 A, is not associated with significant amounts of 

dust (Pratoet al. 2001). 

The importance of the problem in astronomy has been 

addressed by Jiang and Yeh (2004, 2006), where it was shown 

that the presence of disk resulted in additional equilibrium 

points of the system. Other works that took into account the 

gravitational potential from the belt/disk under different 

assumptions include Singh and Taura (2013, 2014, 2015, 

2017) and Jiang and Yeh (2014). 
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Figure 1: An artist's impression of the binary star system HD 98800 B surrounded by a disk. 

(Credit: NASA Spitzer Telescope) 

 

An interesting example of mass loss is the real physical scenario of those transiting exoplanets (Fig 2) whose atmospheres are 

escaping because of the severe levels of energetic radiations, coming from their very close parent stars, hitting them. 

 

 
Figure 2: An artistic impression of mass loss of an extrasolar planet HD 209458b (Credit: European Astronomical 

observatory) 

 

This image shows a dramatic scorched extrasolar planet HD 

209458b in its orbit around a yellow Sun-like star. The image 

shows the atmosphere of HD 209458b (shown in blue) 

evaporating off into space. Much of this planet may 

eventually disappear, leaving only the core, because the 

amount of hydrogen gas escaping from it is estimated to be at 

least 10,000 tonnes per second. 

Hence, one could consider the formulation of the R3BP with 

variable mass as follows viz. 

i. When masses of both primaries vary with time and the 

mass of the third body is kept constant (Gelf’gat 1973; 

Bekov 1988; Luk’yanov 1990 and Singh and Leke 

2010).  

ii. When the mass of the third body is assumed to vary with 

time and the masses of the primaries is kept constant 

(Singh and Ishwar 1984, 1985; Zhang et al. 2012). 

iii. When the three masses vary with time (Letelier and Da 

Silva2011). 

Our interest is in the first case when masses of both primaries 

vary with time and the mass of the third body is kept constant. 

However, we shall also assume that the mass of the disk varies 

with time.Hence, in the present paper, our aim is to establish 

the equations of motion of the R3BP with variable masses of 

the primaries when there is a disk in the configuration. Section 

one contains the introduction, while section two deals with the 

dynamical exploration of the problem. The discussion and 

conclusions are drawn in sections three and four, respectively. 

 

METHODOLOGY  

The two-body problem and the integral of area 

The two-body problem (2BP) is the starting point for nearly 

all reference books in the field of astrodynamics. The basic 

problem describes the motion of two point-masses in mutual 

gravitational attraction. Newton’s law of gravitation leads to 

closed form solutions to the motions of the bodies with respect 

to the center of mass. These solutions can be used to analyze 

orbital properties without the need for cumbersome numerical 

propagation. 

When the formula for gravitation force is applied to the two 

bodies, the equation relating each body’s position with respect 

to the center of mass of the system may be written: 

2

dv r

dt r r


                                                                               (1) 

http://en.wikipedia.org/wiki/HD_98800
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where v is the velocity,  is the product of the gravitational 

constant and the sum of the masses. 

 To obtain the integral of area, we take cross product of 

equation (1) with the vector r , to get                  

3

dv
r r r

dt r


     

Since 0r r  ,    we have      

0
dv

r
dt

                                                 (2) 

Also,  
d dr dv

r v v r
dt dt dt

      

From (2), we get 

 
d dr

r v v
dt dt

  
                             

(3) 

But                        
dr

v
dt

  and since 0v v  ,  

Equation (3) becomes 

  0
d

r v
dt

 
                                        

(4) 

Integrating (4), we have 

r v C                                                   (5) 

 

where C  is a constant vector called the integral of area, so 

r v  is a constant vector and that C  is perpendicular to 

both r and v , which in turns means that C is perpendicular 

to the plane of motion. If in polar coordinates r  and   are 

taken in this plane, then the velocity component along and 

perpendicular to the radius vector joining mass 1m and 2m

are r  and r , so that 

v ri r j 
                                        

(6) 

Here, i and j are unit vectors along and perpendicular to the 

radius vector, hence by equations (5) and (6), we have   

 ri ri r j C    .  

Taking product, yields 

2r k C                                                 (7) 

The constant vector C can be expressed as 

C Ck                                                                    (8) 

where k is a unit vector perpendicular to the plane of the 

orbit.  

Equation (7) now takes the form                                 
2r C                                                                     (9) 

 

Equation (9) is the area integral of the system,   is the 

angular velocity of revolution of the bodies of masses 1m and

2m , and C  is the constant of integration 

Equation of motion of two-body with variable masses 

By the problem of two bodies with variable masses, by 

analogy with the classical problem of two bodies with 

constant masses, one understands the problem of motion of 

two primary bodies, the masses 1m and 2m of which vary 

with time under certain laws and between which only the 

gravitational force acts. It is usually assumed that the 

separation of particles from (or their attachment to) the points 

take place in accordance with Mestschersky’s hypothesis, i.e., 

a contact interaction occurs between the points of variable 

mass and the separating (or attaching) particles; it is assumed 

that the masses of the points vary continuously. 

The absolute motion of the points is described by the 

Mestschersky equation for a point of variable mass, 

 F mv v u m  
                         

(10) 

where F is the sum of all the forces acting on the body and 

v is its velocity, both measured in an inertial coordinate 

system. Also, u  is the velocity of the center of mass of the 

absorbed mass immediately before its union with the body (or 

of the ejected mass immediately after its ejection). The 

overdot denotes derivation with respect to the time variable. 

Gylden represented the relative motion (equation 1) of mass 

2m about mass 1m under the action of mutual gravitational 

force, as the sum of the masses of these points as varying with 

time by a certain law 

 1 2m m t                                  (11) 

 and wrote the differential equation of the problem in the form 

 
3

0
t

r r
r


                                                   (12) 

Mestschersky showed that the Gylden problem (12) is a 

particular case of the problem of two bodies with variable 

mass under the condition that the laws of variation of the two 

masses are the same.   

There are two special cases of equation (10) to be considered. 

The first one is when the mass is ejected with the same 

velocity of the body at any moment  v u , that is, mass 

ejection does not produce reactive forces. This case can be 

used to study the motion of a body ejecting mass isotropically 

(or radiating energy), since the total reactive momentum 

would be zero. 

If v u , then equation (10) reduces to the form 

F mv                                             (13) 

 In this case the relative motion of the problem of two bodies 

with variable masses is described by the equation 

 1 2

3

m m
r G r

r


                     (14) 

Equation (14) is analogous to the equation (1) of the classical 

problem of two bodies with constant masses, with the 

difference that now; the sum of the masses is a certain 

function of time. Equality of the velocities of ejected mass and 

the body at any moment means that isotropic variation of 

masses (in Mestschersky term) occurs. Equation (14) is 

rightfully called the Gylden-Mestschersky problem (GMP). 

   The second case is when mass variation takes place in the 

presence of reactive forces. In this case the particles are at rest 

in an inertial coordinate system, that is 0u  and equation 

(10) becomes 

 
d

F mv mv mv
dt

              (15) 
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 This case can be used to study the orbit of a star moving 

through a static atmosphere, whose particles attach or detach 

to the star as it moves. 

In this case the relative motion of the problem of two bodies 

with variable masses exchanging mass with a static 

atmosphere surrounding them, is described by the equation 

 
 * 1 2

* 3

m m rd
r G

dt r





 

       

(16) 

where            
 

1 2
*

1 2

m m

m m
 


 

The Mestschersky transformation and unified 

Mestschersky law 

Mestschersky (1902) showed that the Gylden problem is a 

particular case of the problem of two bodies with variable 

mass under the condition that the laws of variation of the two 

masses are the same, while the relative velocities of the 

particles separating from them (or attaching to them) equals 

zero everywhere.  He found two laws of variation of the sum 

of the masses of the points 

  0
1 2m m t

a t





  

                 

(17) 

  0
1 2

2
m m t

t t




  
  

 
        

(18) 

where 0 , , ,a   and  are constants. 

In the work of Mestschersky (1902), he reduced the GMP 

through the introduction of new variables and “time” to the 

equations of the classical problem of two bodies with constant 

masses by a transformation, which was thereafter known as 

the Mestschersky (1902) transformation and is given as 

 

 

,                 (19) 

where              2 2R t t t      ; , , ,    are 

the new variables and  12 is constant. 

Later, Mestschersky (1952) came up with a law which 

considers the masses and their sum to vary in the same 

proportion in such a way that  

 
 
0t

R t


  ,   

 
10

1 t
R t


  ,  

 
20

2 t
R t


 

  

                                                        

(20) 

 

where         1 1t Gm t  ,    2 2t Gm t   ,   

     1 2t t t    ,  10 and 20 are constants.                 

The law (20) is called the unified Mestschersky (1952) law 

(UML)and it assures that the centre of the mass of the system 

moves inertially. 

Particular solutions of the Gylden-Mestschersky 

problem. 

We let    1 2t G m m    in equation (14) to get 

2
0

r
r

r r


 

                                         

(21) 

Now, differentiation of equation (9) with respect to time t and 

multiplying by
1

r
, yields 

2 0r r                                           (22) 

But acceleration in polar coordinates is given by 

   2 2v r r i r r j     
     

(23) 

We substitute equation (22) in (23), to get 

 2v r r i 
                                    

(24) 

Using equation (24) in (21) yields 

2

2
0r r

r


  

                                 

(25) 

Now from equation (9), we have     

2
2

4

C

r
 

                                                 

(26) 

Substituting equation (26) in (25), we get 

2

3 2
0

C
r

r r


   ,                                 (27) 

where                           2C r    or 2r C  , 

r  is the distance between the bodies,   is the angle between 

the straight line passing through 1m and 2m  and a certain 

fixed straight line in the plane of motion.  t  is 

angular velocity of revolution of the bodies and C  is the 

constant of area integral. 

Now,from the Mestschersky transformation (19), we have 

 12r R t ,                                       (28) 

Differentiating equation (28), twice yields 

 
 

2

12 3
r

R t

 





                           

(29) 

From second equation of system (27), we have  
2 4 2C r                                            (30) 

Substituting equation (28), (29) and (30) in the first equation 

of system (27); multiplying throughout by

12

1


and 

simplifying results in the equation 

 
 

1

2
02

2 3
12

1
t

R t


  



 
   

                

(31) 

Now since 0, , ,     and 12  are constants, we let 

1

2
02

03
12


  



 
   

 
, 

So that equation (31) becomes 

 
 
0

2
t

R t


 

                                   

(32) 

( ),x R t ( ),y R t ( ),z R t 2 ( )
dt

R t
d



( ), ( 1,2)i ir R t i  12 ( )r R t
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Again, substituting equation (28) and (29) in the first equation 

of system (27) and reducing throughout by  3R t , yields 

 
2

02
12 3 2

12 12

0
C 

  
 

   

       

(33) 

Applying equation (30) in (33), we get 

  02 2
0 3

12

0


  


   

               

(34) 

Also, substituting equation (27) and (32) in equation (30), and 

simplifying, gives 
2
12 0C  

                                              
(35) 

Using equation (35) in (34), we have 
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(36) 

But
 
0

R t


  , 

 Substituting for 0  in equation (36) and multiplying 

throughout by
2
12 , yields 
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With the help of equations (35) and (28), we get the equation 

 2 2 2
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C
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(37) 

Now, if we suppose that 
2 2

0

2
0

  




 


                      

(38) 

Therefore, we can express equation (37) in the form 
2r C 

                                                       
(39) 

 

Equation (39) is a particular integral of the Gylden-

Mestschersky problem and   is a constant defined by 

equation (38). When
2 0   , we get 1  and this 

corresponds to the case when the masses are constant. When
2 0   , this means that 1  and when

2 0   , this implies that 1  . Since kappa cannot 

be zero, the range is such that 0   .   

 

Equations of motion of the restricted three-body problem 

with isotropic mass variations of the primariesand disk 

      Let us consider a rotating frame of reference Oxyz , 

where O is the origin and suppose that  and  are the 

masses of the primary bodies and 3m  is the mass of the third 

body. Let the radius vector from 3m  to  be , 3m  to 

 be  and the distance between the two primaries be

and let  be the angular velocity.  

 Now, the kinetic energy in the rotating frame of reference 

 is given by 

                   (40) 

Now, the potential energy has the form 
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GmV                               (41) 

where  ,     and G  is the gravitational constant while 𝑀(𝑡)is the 

mass of the disk. 

The Hamiltonian H is given as 

                                             (42) 

The Hamiltonian canonical equations are given by  

,   ,  , ,         (43) 

where 

 3x m x y    ,    3y m y x   , 3z m z 
                                      

(44) 

are the generalized components of momentum, 

Now, differentiating (44) w.r.t 𝑥 and comparing with (43), we get 
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Using equations (41)  produces 
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Now, we let 

1 1( ) ( )Gm t t , 2 2( ) ( )Gm t t  

So that equations (45) take the form:  
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where   
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1r and 2r are time dependent distances of the third body from 

the primaries positioned at 1( ,0,0)x and 2( ,0,0)x , 

is the product of the gravitational constant and the sum 

of the masses;
222 zyxr  and is the radial 

distance of the infinitesimal mass in the  R3BP with variable 

mass. The masses vary in accordance with the UML while 

motion of the primaries is described by the GMP. 

These equations describe the motion of the third body in 

the gravitational field of the primariesin the Barycentric 

coordinate system 0xyz , rotating with an angular velocity 

 t about the z  axis perpendicular to the plane of 

motion of the primaries, while the x  axis always passes 

through these points under the consideration that both 

primaries have variable masses and there is a disk to interact 

with in the configuration. 

Now, since the coordinate system is Barycentric, from the 

property of the center of mass we have 

 

where 

,              (47) 

The expressions (47) connect the Barycentric coordinates 

and with the mutual distance r . 

 

DISCUSSION  

The equations of motion (46) of the R3BP with variable 

masses under the influence from a disk has been derived under 

the condition that the motion of the primaries takes place in 

accordance with the GMP and their masses vary according to 

the UML. The mass of the disk has also been assumed to vary 

in the same way as the masses of the primaries. Therefore, 

3

3

1 V
m z

m z


 



 t

cr

1 1 2 2 0x x  

2
1

1 2

r
x



 
 



1
2

1 2

r
x



 




1x

2x



DERIVATION OF THE DYNAMICAL …      Taura et al., FJS 

FUDMA Journal of Sciences (FJS) Vol. 6 No. 4, August, 2022, pp 125 - 133 
132 

with the help of the potential (41) and the Hamiltonian 

canonical equations, we have deduced the equations of 

motion of the R3BP with variable masses and disk. These 

equations are different from those of Bekov (1988, 1991, 

1993) and those of Luk’yanov (1989,1990), Singh and Leke 

(2010, 2012, 2013a,b,c,d) due to the inclusion of the mass of 

the disk in the set up. If we put (𝑡) = 0 , our equations (46) 

will fully coincide with those of the previous studies of Bekov 

(1988, 1991,1993) and those of Luk’yanov (1989,1990). 

 

CONCLUSION 

This paper explores the dynamical equations of the R3BP 

with variable masses and disk, when the masses of the 

primaries and that of the disk vary with time in accordance 

with the unified Mestschersky Law and the motion of the 

primaries are governed by the Gylden-Mestschersky problem. 

The equations derived are affected by the mass of the disk and 

are different from those of previous studies. 
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